Introduction Experiments Model Techniques

Privacy and Anonymity in Graph Data

Michael Hay, Siddharth Srivastava, Philipp Weis

May 2006

Outline

- Introduction
- 2 Emiprical Analysis of Data Disclosure
- 3 Modelling Privacy and Disclosure for Graph Data
- 4 Graph Anonymization Techniques

What anonymization is about:

- Want to publish data about invidivuals without revealing any private information
- Examples: census data, medical records, network traces, . . .
- High level idea: separate sensitive from non-sensitive information, and remove all (or most) sensitive information

Anonymization of single-table data is studied widely and used in practice.

k-Anonymity

- Introduced in [?].
- Ensures that any individual cannot be distinguished within a group of at least k individuals.
- This is achieved by generalizing attribute values to ranges.

k-Anonymity

- Introduced in [?].
- Ensures that any individual cannot be distinguished within a group of at least k individuals.
- This is achieved by generalizing attribute values to ranges.

[FL, GU]	[96932, 99401]	PAXSON COMMUNICATIONS CORP	REP	2000
[FL, GU]	[96932, 99401]	PAXSON COMMUNICATIONS CORP	DEM	300
ÎFL. GUÎ	[96932, 99401]	PAXSON COMMUNICATIONS CORP	DEM	300
FL, GU	96932, 99401	PAXSON COMMUNICATIONS CORP	DEM	1000
[FL, GU]	[96932, 99401]	PAXSON COMMUNICATIONS CORP	REP	300
ļ̃FL, GU	[96932, 99401]	PAXSON COMMUNICATIONS CORP	DEM	500
[FL, GU]	[96932, 99401]	PAXSON COMMUNICATIONS CORP	DEM	500
MA	01002	[AMHERST COLLEGE, BULKELY RICHARDSON]	DEM	250
MA	01002	AMHERST COLLEGE, BULKELY RICHARDSON	DEM	250
MA	01002	[AMHERST COLLEGE, BULKELY RICHARDSON]	DEM	250
MA	01002	AMHERST COLLEGE, BULKELY RICHARDSON	DEM	250
MA	01002	[AMHERST COLLEGE, BULKELY RICHARDSON]	DEM	250
MA	01002	[AMHERST COLLEGE, BULKELY RICHARDSON]	DEM	500
MA	01002	AMHERST COLLEGE, BULKELY RICHARDSON	DEM	250
MA	01002	[AMHERST COLLEGE, BULKELY RICHARDSON]	DEM	250
MA	01002	AMHERST COLLEGE, BULKELY RICHARDSON	DEM	2000
MA	01002	[AMHERST COLLEGE, BULKELY RICHARDSON]	DEM	250
MA	01002	[AMHERST COLLEGE, BULKELY RICHARDSON]	DEM	250

- Obtain examples of graph data, get a feeling for private and non-sensitive properties of these graphs, experiment with re-identification
- Develop a theoretical framework for graph data publication, privacy, anonymization and information disclosure
- Investigate conventional anonymization techniques on graph data. Where do they fail?
- Develop new techniques that can be used to anonymize graph data

Outline

- Introduction
- 2 Emiprical Analysis of Data Disclosure
- 3 Modelling Privacy and Disclosure for Graph Data
- 4 Graph Anonymization Techniques

- What properties about the real-world can the adversary infer from published data?
- We investigate the following **re-identification** task: input:
 - a set of real-world objects (Enron employees)
 - some background knowledge about the objects
 - a published graph (email communications), 'anonymized' by removing object identifiers (e.g. joe@enron.com becomes v_{10})

output:

- map each real-world object to a vertex (or a subset of vertices) in the published graph (e.g. $joe@enron.com \rightarrow \{v_4, v_{10}, v_{17}, v_{65}\})$
- Turns out re-identification can be succinctly described as a constraint satisfaction problem (CSP), except enumerate all assignments rather than find a single assignment

- A CSP is defined by:
 - a set of variables X_1, \ldots, X_n
 - each variable X_i has a **domain** D_i of possible **values**
 - a set of **constraints** C_1, \ldots, C_m which constrain the possible values that a variables can take on
 - A solution is an assignment of variables to values such that constraints are satisfied
 - Any CSP can be represented as a **constraint graph**: one vertex per variable and an edge for each binary constraint.

- variables: one per real-world object
- **domains**: the set of vertices in published graph $\{v_1, \ldots, v_n\}$
- constraints: background knowledge
 - unary constraints: degree(o_i), connected_component_size(o_i)
 - binary constraint: $edge(o_i, o_i)$, $path_k(o_i, o_i)$
 - n-ary constraint: $all_different(o_1, \ldots, o_n)$
- **solution**: for each object o, the set of plausible vertices. I.e. a subset of vertices $V' \subseteq \{v_1, \dots, v_n\}$ such that when o was mapped to $v \in V'$ a valid solution was found
- constraint graph: surprisingly sparse, so CSP solver runs fast!

Toy Example

CONSTRAINT GRAPH

{ **V1**, V2, V3, V4 }

{ ∀1, **∀2**, ∀3, ∀4 } { V1, V2, **V3**, **V4** }

Background Knowledge: degree(E2) = 3edge(E1,E3)

Empirical Analysis: How does background knowledge help?

Email communications of 117 Enron employees, private data that is now part of public record (following subpoena). Task: re-identify Enron employees in graph of email communication (edge means \geq 5 emails both directions).

Background Knowledge	Ave. Domain Size	No. Reidentified
None	117	0 (out of 117)
Centrality Quartile	29.2	0
Degree Only	13.2	4
Degree And Centrality Quartile	5.4	12
25% edges	-	-
Degree And 25% edges	8.2	28
Degree And 50% edges	2.40	63

Introduction Experiments Model Techniques

Re-identifying Enron Employees from Emails

Background knowledge was node degree and a sample of 25% of the edges (shown in blue), weighted by frequency of communication. Red nodes have been re-identified.

Outline

- Introduction
- 2 Emiprical Analysis of Data Disclosure
- 3 Modelling Privacy and Disclosure for Graph Data
- 4 Graph Anonymization Techniques

Node properties and types

Goals of the anonymization:

- We consider information about specific individuals private.
- We want to publish a modified version of the original data that does not reveal any private information, but is still useful.

Node properties and types

Goals of the anonymization:

- We consider information about specific individuals private.
- We want to publish a modified version of the original data that does not reveal any private information, but is still useful.

Classify nodes in the graph with respect to their properties. The type of a node is a summary of all relevant properties of a node. Types contain information like

- Node attributes (just as in the tabular case)
- Degree
- Centrality
- Neighborhood information

Anonymization with node types

How we anonymize our data

- Remove identifiers (names) from some or all nodes
- Anonymize node and edge attributes (as with classical anonymization)
- Modify the graph

How we anonymize our data

- Remove identifiers (names) from some or all nodes
- Anonymize node and edge attributes (as with classical anonymization)
- Modify the graph

Let N be the set of individuals represented in the graph, and let Vbe the set of (unnamed) nodes in the graph.

Anonymization with node types

How we anonymize our data

- Remove identifiers (names) from some or all nodes
- Anonymize node and edge attributes (as with classical anonymization)
- Modify the graph

Let N be the set of individuals represented in the graph, and let Vbe the set of (unnamed) nodes in the graph.

The adversary tries to use his background knowledge to re-identify certain individuals, i.e. he tries to learn their type.

How we anonymize our data

- Remove identifiers (names) from some or all nodes
- Anonymize node and edge attributes (as with classical anonymization)
- Modify the graph

Let N be the set of individuals represented in the graph, and let Vbe the set of (unnamed) nodes in the graph.

The adversary tries to use his background knowledge to re-identify certain individuals, i.e. he tries to learn their type.

Background knowledge $\kappa: N \to \mathcal{P}(V)$ or $\kappa: N \to \mathcal{P}(T)$. Compare this to knowledge after the publication κ' .

Background Knowledge and Disclosure

Background knowledge $\kappa: N \to \mathcal{P}(V)$ or $\kappa: N \to \mathcal{P}(T)$ (or probability distributions).

To guarantee k-anonymity: for all individuals $n \in \mathbb{N}$: $\kappa'(n) > k$. Ignore adversary's background knowledge here.

Background Knowledge and Disclosure

Background knowledge $\kappa: N \to \mathcal{P}(V)$ or $\kappa: N \to \mathcal{P}(T)$ (or probability distributions).

To guarantee k-anonymity: for all individuals $n \in \mathbb{N}$: $\kappa'(n) \geq k$. Ignore adversary's background knowledge here.

Consider different distance measures $d(\kappa, \kappa')$ to measure the amound of disclosure.

$$d_{\mathsf{max}}(\kappa,\kappa') = \mathsf{max}\left\{ \frac{\kappa(n) - \kappa'(n)}{\kappa(n)} \;\middle|\; n \in N \right\}$$

Include distance measure between types.

Outline

- Introduction
- 2 Emiprical Analysis of Data Disclosure
- Modelling Privacy and Disclosure for Graph Data
- 4 Graph Anonymization Techniques

Hurdles in Guaranteeing Privacy in Graphs

From	То	Count
Samson	Delilah	50
Arthur	Merlin	65
Alice	Bob	0
Delilah	Alice	50

Degree-Type

Anonymizing Graphs is Difficult

- Tuples are interdependent: cannot merge tuples on any single attribute without possibly disturbing the others or making the graph inconsistent. Renders most anonymization algorithms infeasible.
- Each individual could occur in several tuples but still need not by anonymized.

Degree-Types: A Simple Case

Node-Degree is a simple yet interesting node type to consider.

Degree-Type

Figure: A Component of Enron Email Communication Graph (only senior/known employees)

Degree-Type

- We wish to anonymize without creating false information. Adding/deleting edges to manipulate degrees is ruled out.
- Can add vagueness to the graph.
- Only way to manipulate degrees is to generalize nodes or edges.
- Generalizing nodes is easier. Edge generalization causes more side effects.

A Connectivity Respecting 3-Anonymization on Degree

Degree-Type

We can keep the edges of triangle A, B, C because there is one edge between every pair.

How did we do that?

- Basic Idea: merge nodes until all degree-types have at least k nodes.
- Any such grouping will work but some groupings are better at preserving graph properties than others.

Naive Degree-Based Anonymization

While (! k-anonymized)

- Find lowest degree with fewer than k nodes.
- Merge its nodes with nodes of next largest degree with fewer than k nodes.

Degree-Type

Naive Degree-Based Anonymization

While (! k-anonymized)

- Find lowest degree with fewer than k nodes.
- Merge its nodes with nodes of next largest degree with fewer than k nodes

Degree-Type

Comparison of The Two Approaches

- Problem: Does not care about graph structure!
- However, it keeps the Type-ranges small.
- Two counter-acting aspects of utility: Graph Structure and Type-Range.

Degree-Type

Result of Naive Degree-Based Anonymization

Advantage: smaller degree ranges.

Degree-Types and k-anonymization

It turns out that achieving privacy for Degree-Types can be done through k-anonymization:

QuasiID = Degree

Faralana Dama

Employee	Degree
Samson	4
Delilah	2
Arthur	8
Alice	5
Bob	9
Merlin	1

2anonymization

Employee	Degree
Merlin	[1-2]
Delilah	[1-2]
Samson	[4-5]
Alice	[4-5]
Bob	[8-9]
Arthur	[8-9]

If adversary has degree information about any individual it will match at least two individuals in published data.

Utilizing k-Anonymization Algorithms

 Anonymization with degree as an attribute will treat nodes with similar degrees as "close" to each other for merging.

Degree-Type

- We might want "close"-ness to be defined in terms of graph connectivity.
- Create another attribute, which captures closeness in the graph.
- k-anonymize using this new attribute and the degree.
- Post-process results of k-anonymization to merge nodes whose degrees were merged, into supernodes in the graph.

General Class of Type-Anonymization Algorithms

While (! Anonymized)

- Use Type-Histogram to determine the Type with lowest frequency.
- ② Choose nodes N_h , N_l of highest and lowest degree of this type.

Degree-Type

- Perform one of the following in a suitable ratio:
 - Choice 1 Merge N_h with closest node/supernode of a Type with lesser than k nodes.
 - Choice 2 Merge N_l with node/supernode of the most similar Type with lesser than k nodes.
- Label the merged node.
- Update the histogram.

References