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Abstract. We present a novel approach for solving pursuit-evasion
problems where multiple pursuers with limited sensing capabilities
are used to detect all possible mobile evaders in a given environment.
We make no assumptions about the number, the speed, or the ma-
neuverability of evaders. Our algorithm takes as input a map of the
environment and sensor models for the pursuers. We then obtain a
graph representation of an environment using a Čech Complex. Even
with such a representation, the configuration space grows exponen-
tially with the number of pursuers. In order to address this challenge,
we propose an abstraction framework to partition the configuration
space into sets of topologically similar configurations that preserve
the space of possible evader locations. We validate our approach on
several simulated environments with varying topologies and numbers
of pursuers.

1 Introduction
With the advent of technology, robotics has come to play a signif-
icant role in many applications, including autonomous search and
pursuit-evasion. In this work, we address the problem of pursuit-
evasion where a team of coordinated pursuers needs to search a given
environment for an unknown number of evaders or targets. Pursuit-
evasion formulations can be used to represent many useful applica-
tions such as surveillance or search and rescue. For instance, con-
sider the problem of deploying a team of mobile sensing robots to
patrol a military base in order to detect any intruders breaking into
the base, or to search for survivors after a disaster. In such scenar-
ios, pursuers must take into account the fact that evaders are mobile
and may avoid being detected; they may also know the location of
all pursuers at all times and may move faster than the pursuers. As
a result, simply checking all areas is not sufficient and one needs to
generate sophisticated pursuit strategies.

The pursuit-evasion problem has been studied extensively from
many perspectives including differential game theory [8], graph-
based search [14, 10, 7] , visibility-based search[12, 5, 11, 4], prob-
abilistic search [2, 3, 6, 9, 13, 15], and sensor placement[1]. Isaacs
[8] determined sufficient and necessary conditions for a pursuer to
capture an evader in the scenario where a pursuer and an evader al-
ternatively take turn moving in finite space.

Parsons [14] pioneered the graph theory aspect of pursuit-evasion
problem in 1976 by solving the problem of searching for a lost man
in the known structure cave, which he represents as searching on a
discrete graph. In this framework, evaders reside on edges and can be
adversarial. To detect the evaders, the pursuer must move along the
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edge occupied by the evaders and touch the evader. Initially all edges
are contaminated, and become cleared if they do not contain any
evaders. The edges can also be recontaminated if an evader moves
back to the cleared edge without being detected. The pursuers’ goal
is to find a trajectory that clears all edges.

Later in 2007, Kolling and Carpin [10] proposed an algorithm to
solve a similar problem called GRAPH-CLEAR, where the goal is to
compute an optimal solution in clearing the graph under special cir-
cumstances. Nevertheless, this form of edge-search, where evaders
reside on the edges, is not directly applicable to most robotics ap-
plications, especially in unstructured environments where construc-
tion of the graph is non-trivial. In more recent work, Hollinger et al.
[7] discussed an algorithm called GSST for adversarial search where
evaders reside on the node. GSST still suffers from reliance on graph
construction in unstructured environments and the solution is limited
to tree structures, which may extend to non-tree structures by placing
some stationary pursuers to break up the cycles.

On the other hand, LaValle et al. [12, 11], Guibas et al. [5] and
Gerkey et al. [4] formulated the pursuit-evasion problem as search-
ing in a continuous space where each pursuers has infinite line of
sight and the goal of the pursuers is to see all possible evaders. Their
method partitions free space based on the critical points, which are
vertices of the polygonal obstacles, and then performs a graph-based
searching technique. Nevertheless, their approach only works with
very few pursuers and the critical point technique is limited to two
dimensional environment.

Probabilistic formulations of pursuit-evasion relax the worst-case
scenario with the models of evaders or some uncertainty. Hespanha
et al. [6] pioneered the probabilistic framework by using a greedy
policy to control swarms of robots. Ong et al. [13] proposed an ap-
proximate sampling-based algorithm to solve pursuit-evasion as a
POMDP problem, while Isler [9] et al. proposed a randomized strat-
egy that allows one to two pursuers to capture any evader in simply
connected polygonal environment. On the other hand, Bourgault et
al. [2, 3] applied Bayesian filtering approaches to model the motion
of a non-adversarial target which were then extended to multiple tar-
gets by Wong et al [15].

In sensor networks, Adams and Carlsson [1] use tools from al-
gebraic topology to determine sufficient and necessary conditions to
identify the existence of an evasion path given the positions of each
mobile sensor in the space-time dimension of two dimensional envi-
ronments.

In this paper, we propose an alternative approach for solving the
worst-case adversarial pursuit-evasion problems where multiple pur-
suers equipped with limited-range sensors are used to detect and cap-
ture all possible mobile evaders in a given environment. Our main ob-
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(a) A graph representation is constructed for the
given environment and the pursuers sensor model.
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(b) The entire configuration space of N = 2 pursuers is partitioned into a
set of abstract states (purple boxes), where a subset of them are being shown,
{s1, s2, s3, s4}. This abstraction is described in section 3. For each concrete mem-
ber state, the pursuers’ positions are depicted by blue shaded vertices. An edge oc-
curs between two abstract states s1 and s2 when it is possible to go in one move of
a pursuer, from a concrete member state of s1 to a concrete member state of s2.

π :

t0 t1 t2 tT−2 tT−1 tT

si1 si2 sik−1
sik

(c) The hierchical planner synthesizes a strategy as a sequence of abstract actions (πS) and then refines πS into a sequence
of actions (π) that can be executed by the pursuers for N = 2. In π, the positions of the pursuers are depicted by blue
shaded vertices, while the evader may reside in the unshaded vertices with red boundary.

Figure 1: Overview: Illustration of the main steps for synthesize the solution strategy for pursuit-evasion problem with our framework.

jective is to design a general algorithm for automatically computing
the strategy that pursuers should follow for detecting all evaders.

The essence of our approach is illustrated in Figure 1. Our algo-
rithm takes as input a map representing the environment, a sensor
model of the pursuers, and the number of pursuers. Using the sen-
sor model of the pursuers, we first construct a graph representation
of the environment as shown in Figure 1(a). Next, we formulate the
configuration space of the pursuers using the graph representation
and the number of pursuers N and partition it into the set of abstract
states (Figure 1(b)). Finally, we synthesize the strategy as a sequence
of abstract actions and then perform the refinement step to map the
abstract strategy into the solution strategy in the configuration space
of the pursuers as illustrated in Figure 1(c).

We begin with the presentation of the preliminaries including
problem description and formulation of pursuit-evasion as a partially
observable planning problem in section 2. In section 3, we introduce
the abstraction framework. Section 4 presents strategy synthesis over
the abstraction framework and our algorithm for retrieving the so-
lution strategy in the original graph representation. We validate our
approach with simulations and analysis in section 5.

2 Preliminaries
2.1 Problem Description
We consider the problem of pursuit-evasion (PE) for worst-case ad-
versarial targets with N pursuers, where the number of evaders is
unknown and the evader is capable of moving arbitrary fast.

A map is defined as a free space, F , in an n-dimensional Euclidean
space, where n is typically 2 or 3. The position of the ith pursuer is
specified by pi ∈ F , which can be applied to the sensor model O
to get the sensor footprint, a set of points in F that can be observed
from position pi, O(pi) ⊆ F . An evader space E is defined as a set
of points not being observed by any pursuers,

E = F \
⋃

i

O(pi).

Each point in the map can be clear or contaminated. The point is
contaminated if an evader could be present in it, otherwise it is clear.
The map is said to be clear when all points in F are clear. A point
can be made clear by being observed by any pursuer. However, a
clear point q ∈ E can become contaminated again if there exists a
path in the evader space from another contaminated point p ∈ E to
q, where the path from p to q is defined as a continuous function
τpq : [0, T ] → E such that τpq(0) = p, τpq(T ) = q.

The process of clearing and contaminating the map as the pursuers
move around is illustrated in Figure 2. Initially, evader can be at any
unobserved points, so they are all contaminated. The pursuer then
moves forward and clears the points along the path. However, as the
pursuer moves further and clear points are exposed to the contami-
nated ones, they become contaminated again. The objective of PE is
then to compute trajectories for each pursuer for clearing all regions
in the evader space, where a trajectory of ith pursuer is defined as a
continuous function of time, pi(t) for t ∈ [0, T ].

Definition 1. (Strategy on map) Let F be a free space representing
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Figure 2: Illustration of the contaminated regions, shaded in red, and
cleared regions, shaded in green, as the pursuer moves around in the
free space. Initially, evader can be in any regions, so they are all
contaminated. The pursuer then moves forward and clear the
regions along the path. However, as the pursuer moves further and
the cleared regions are connected to the contaminated ones, they
become contaminated again.

a map. A strategy (π) is a collection of trajectories for all pursuers,
πF : [0, T ] → FN , i.e. πF (t) = [p1(t), p2(t), ..., pN (t)].

Definition 2. (PE problem on a map) Given the map F with N
pursuers with sensor model O, determine a strategy π that clears the
map F .

Synthesizing a solution in continuous space can quickly become
intractable, especially when multiple pursuers are required. As a re-
sult, we choose to reduce PE problem on a map to PE problem on a
graph using Čech complex construction. We will first describe how
to construct a graph and then formally introduce PE problem on a
graph.

One of the main step in graph construction is choosing a set of rep-
resentative points such that every point in F can be observed from
at least one of the samples. Ideally, we also want to minimize the
size of the representative set. However, this is essentially a minimum
set cover problem, one of the well-known NP-complete problems
and hence we use a sampling-based method. First, we uniformly dis-
tribute the points to cover the convex hull of F based on the sensor
model O. We then keep the sampling points that lie within F and set
aside the rest. Next, we iterate through the points in F that are not
within the sensor footprints of any chosen positions and choose the
point in F closest to the nearest samples from the discarded points.

Assuming that O is convex and the pursuer can move holonomi-
cally, we then construct the Čech complex over the sampling points.
For Čech complex, a 0-simplex exists for each sampling point; a
1-simplex exists between two 0-simplices whose their correspond-
ing points have a non-empty intersected sensor footprints; and a 2-
simplex exists for every 3-tuple of points whose sensor footprints
have a non-empty intersection. To assert that we attain the hole-less
coverage of the free space, we want the 2-simplices to cover all the
points that are sufficiently far away from the obstacle. The points are
sufficiently far away if it cannot be observed from the closest bound-
ary of the obstacles.

Definition 3. (Graph representation) G = (V,E), where V is the
set of 0-simplices and E is the set of 1-simplices.

Similar to the map, each vertex on G can be either clear or con-
taminated. The vertex v is clear when pursuer visits. However, v
can be recontaminated at any time step if there exists a sequence
of unobserved vertices to another point u, i.e. (w1, ..., wk), where
w1 = v, wk = u, (wi, wi+1) ∈ E and all wi’s are unobserved. G is
clear when all vertices are clear.

The trajectory on a graph is then defined as a sequence of vertices,
(v0, v1, ..., vT ), vi ∈ V such that (vi, vi+1) ∈ E. For simplicity,
we will discretize the movement of pursuer into time step of 1. In ad-
dition, we assume that multiple pursuers can occupied same vertex.

Definition 4. (Strategy on a graph) Let G = (V,E) be a graph. A
strategy on graph (πG or π) is a collection of trajectories on graph,
π : {0, 1, ..., T} → V N , i.e. π(t) = [vt1, v

t
2, ..., v

t
N ].

Definition 5. (PE on a graph) Let G = (V,E) be a graph. Deter-
mine a strategy π that clears G.

Furthermore, the strategies computed on the graph can be trans-
lated back into executable trajectories on the map. For any (u, v) ∈
E, a path between u, v is defined as a continuous function τuv :
[0, 1] → F such that τ(0) = u and τ(1) = v. Additionally, to pre-
vent v from immediately contaminate u during execution, τuv must
satisfy the following property:

⋂

t∈[0,1]

O(τuv(t)) = O(u) ∩O(v),

which ensures that the clearing process on the discrete graph would
entail the clearing process on the continuous map.
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Figure 3: Example of graph representation in 2D environment with
holomomic pursuer equipped with circular sensor footprint (left)
and its Čech Complex (right). The path between vertices are
denoted by solid lines, which are either a straight line or a pair of
lines through an intermediate point in the presence of obstacles.

In this paper, we will focus on the holonomic pursuer with sen-
sor model of a ball with radius r. We demonstrate the construction
of graph representation using Čech complex on a map with circular
sensor model in Figure 3. The path between any vertices will either
be a straight line or a pair of straight lines through the point inside
the intersection of their sensor footprints due to the presence of obsta-
cles. In both cases, these paths satisfy the property for τ that prevents
the immediate contamination during execution. For instance, τ3,7, a
straight line from vertex 3 to 7, and τ3,8, a pair of straight lines from
vertex 3 to 8, always cover their corresponding intersection as shown
in Figure 4.

2.2 Solving PE as a Partially Observable Planning
Problem

Since the positions of the evaders are unknown, we cannot fully ob-
serve the state during planning. Hence, we introduce the notion of
belief state. The belief state at any time step, denoted by x(t), con-
sists of the configuration/position of all pursuers, denoted by p, and

R. Ramaithitima et al. / Hierarchical Strategy Synthesis for Pursuit-Evasion Problems1372



7 

8 3 

τ3,8

Figure 4: A valid path exist for any edges in G. For instance, any
points along τ3,7 and τ3,8 remain observing O(3) ∩O(7) and
O(3) ∩O(8) respectively.

the possible positions of the evaders, which will be referred as the
contaminated regions denoted by c. We omit the argument in x(t)
when it is clear from the context. The collection of all belief states
is referred as the belief space, X , while the configuration space, P,
is spanned by the position of the pursuers. The span of contaminated
regions will be referred as the contamination space, C, so that

x = (p, c)

On the graph representation G, the configuration space is spanned by
the pursuer positions, p = {p1, ..., pN}, where pi ∈ V. On the other
hand, the contamination space can be defined as a set of vertices that
the evaders could be present in. Hence, it is a subset of a power of set
of V , c ∈ C ⊆ P(V ).

The update step occurs when the pursuers take action, i.e. move
along an edge in G. With the time discretization on graph, the action
can simply be written as the next configuration of the pursuers, p′,
and hence the update function can be defined as

Update(xt,p
′) :

xt+1 = (p′, UpdateContaminate(ct,p
′))

UpdateContaminate updates the contaminated vertices based on
the current contamination status and next configuration of the pur-
suers by computing a set of reachable vertices on G′ = (V \p′, E \
p′) beginning at ct\p′. In addition to all edges that contain occupied
vertices, the edge subtraction may require removing some additional
edges. The additional edge removal will be explained in section 3.1.

The solution strategy is then a sequence of actions in the belief
space such that the contaminated regions become an empty set, i.e.
π = {(p0, c0), (p1, c1), ..., (pT , ∅)}, where (p0, c0) is the initial
state. Solving this as a partially observable planning problem requires
search in an intractably large space of belief states, which is exponen-
tial in the number of joint pursuer-evader configurations. To address
this challenge, we will use a novel abstraction technique that is de-
scribed in the next section.

3 Abstraction Framework
3.1 Abstract State Space
To cope with the exponential growth of the belief space, we propose a
novel method to partition the configuration space into abstract state
space, denoted by S, by utilizing the topological invariants of the
evader space.

Although the contamination space might appear to be exponential
in |V |, not all combinations of the contaminated regions are reach-
able. Since the evader can move arbitrary fast, any adjacent regions
in the evader space will both be either contaminated or cleared.

(a)

7 

1 

2 

3 

4 

5 

6 

(b)

Figure 5: Illustration of an connected component function on G with
pursuers at p = ⟨3, 3⟩. (a) The sensor footprint is projected onto F
which then separates the evader space into multiple connected
components (b) The graph is reconstructed on the evader space
where the position of pursuers are depicted by blue-shaded vertices,
while the evader space are grouped by shaded boxes for each
connected component. CC(⟨3, 3⟩, G) = {{1, 2}, {4, 5}, {6, 7}}

2 

1 3 

(a) With pursuer at ⟨2⟩, 1
and 3 remain connected with
removal of 2 in G but actu-
ally get disconnected in F .

2 4 

1 3 

(b) Similarly, with pursuers at
⟨2, 3⟩, 1 and 4 remain connected
with removal of 2 and 3 in G but
actually get disconnected in F .

Figure 6: Additional edges removal is required when computing
connected component on G on these cases.

Utilizing this fact, we define the connected component (CC) func-
tion which returns the sets of adjacent vertices in the evader space of
G based on the assignment of pursuers, p, denoted by CC(p, G) or
simply CC(p) when G is obvious. The connected component func-
tion can be computed by projecting the sensor footprints of the pur-
suers onto the free space, and then reconstructing the graph represen-
tation of the evader space, E , as illustrated in Figure 5.

The connected component function can also be computed by sub-
tracting the vertices (and their associated edges) occupied by the pur-
suers from G. Nevertheless, in the present of obstacles, the evader
space might remain connected in G while becoming disconnected in
F as illustrated in Figure 6. These exceptions lead to additional edges
being removed from G. For 2D environment, there are only two pos-
sible scenarios. The first scenario occurs when the intersection of two
sensor footprints is completely contained inside the sensor footprint
of another vertex (Figure 6(a)). The other scenario occurs when there
is a 4-way intersection of sensor footprints, resulting in edge inter-
section in G (Figure 6(b)).

During graph construction, we can keep track of the intersection
between sensor footprints to handle the first scenario, while edge in-
tersection can be easily computed. Hence, the CC function can be
computed on G for 2D environment. For higher dimension, the CC
function can be computed on G only if all exceptions are tractable.
Otherwise, completeness is not guaranteed.
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Figure 7: Simple configuration space of two pursuers is partitioned
into abstract state space using equivalence relation.

Using the results of the CC function, we want to partition the con-
figuration space into abstract states in a way that preserves the topol-
ogy of the evader space, which is equivalent to the contamination sta-
tus of each connected component remains unchanged. Using abstract
state S1 in Figure 7 as an example, ⟨3, 3⟩ ∼ ⟨3, 4⟩ and there exists
a one-to-one mapping between CC(⟨3, 3⟩) and CC(⟨3, 4⟩) which
preserves the contamination status of each connected component. On
the other hand, the edge between two abstract states denotes the tran-
sition that does not preserve the topology of an evader space, which
could then lead to the changes in contamination status of the evader
space. For instance, the edge between S1 and S2 represents the tran-
sition between ⟨3, 4⟩ and ⟨4, 4⟩ which is resulted in two connected
components of CC(⟨3, 4⟩) merging and could potentially changes
their contamination statuses. We first introduce a relation between
two adjacent configurations and then formally define an equivalence
relation for partitioning the configuration space as follow.

Let p → q denotes two adjacent configurations p, q ∈ P s.t.
(pk, qk) ∈ E, ∀k ∈ {1, ..., N}. Given two adjacent configurations
we can define a relation, which we call transition relation, as follows.

Definition 6. (Transition Relation) Let p, q ∈ P s.t. p → q. The
transition relation ρp,q between connected components of p and q is
defined as

(ccp
i , cc

q
j) ∈ ρp,q ⇔ ccp

i ∩ ccq
j ̸= ∅ ,

where ccp
i ∈ CC(p), ccq

j ∈ CC(q).

Given the previous definition we can now formally introduce an
equivalence relation between states, which we will use to define a
state abstraction.

Definition 7. (Equivalence Relation) For all r, s ∈ P we say that r
is equivalent to s, or r ∼ s, if and only if there exists a finite sequence
{zi}T0 ∈ PT+1 with ρ such that

1. z0 = r, and zT = s;
2. zi → zi+1, with i ∈ {0, ..., T − 1};
3. ρzi,zi+1 is a bijection.

Hence, the abstract state space can be defined as S = P/∼, where
each abstract state si ∈ S is a collection of equivalent configurations.

As a result, the contamination status of each connected compo-
nent could only be changed upon transition between abstract states.
Hence, we can synthesize a solution strategy on the abstract state
space instead of synthesizing the strategy directly in the configura-
tion space.

In next section, we will describe the algorithm to incrementally
construct the abstract state space S, the function mapping P to S,
denoted by (γ), and the adjacency matrix of abstract states, denoted
by M.

3.2 Partition Algorithm

Algorithm 1 Partition algorithm

1: S ← ∅,M ← ∅
2: Q.Insert(pI) for some arbitrary pI

3: while Q ̸= ∅ do
4: p ← Q.GetF irst(), mark p as visited
5: γ(p) ← null, AdjacentS ← ∅
6: for p′ ∈ Adjacent(p) do
7: if p′ is visited then
8: if CC(p) ∼ CC(p′) then
9: if γ(p) is null then

10: γ(p) ← γ(p′)
11: else
12: Resolve conflict if needed
13: end if
14: else
15: AdjacentS .Insert(γ(p

′))
16: end if
17: else if p′ is unvisited then
18: Q.Insert(p′), mark p′ as alive
19: end if
20: end for
21: if γ(p) is null then
22: S.Insert(Abstract(p)), γ(p) ← Abstract(p)
23: end if
24: for a ∈ AdjacentS do
25: Update M(γ(p), a)
26: end for
27: end while

Algorithm 1 outlines an incrementally construction of the abstract
state space and other components required for synthesizing a strat-
egy. The concept is to perform a forward search over the configu-
ration space P beginning at an arbitrary state pI and partition the
configuration states into the abstract state, a ∈ S, based on the out-
put of CC(p).

Following standard forward search algorithm (line 2-6, 17-18),
each state in P begins as unvisited and will be marked alive or visited
upon inserting to or removing from Q respectively. The set of alive
states is stored in the list Q and the search is completed when the
list Q is empty. The function Adjacent(·) in line 6 returns the set of
adjacent states by moving the pursuers along graph G. In this step,
we will restrict the adjacent states to one pursuer movement only.

The partitioning occurs between line 7-15 and 21-25, where we
compare the connected components of the current state to the visited
adjacent states and either assign the current state to the new abstract
state or append it to the existing one.

In general, comparing the connected component between two ar-
bitrary configurations is nontrivial. Comparing those of the adjacent
configurations is much simpler. In line 8, we compute the transition
relation, ρp,p′ , as defined in Definition 6 and check whether it is
bijective. This transition relation is also used for updating the con-
taminated regions when transiting between abstract states.

If the graph consists of cycles, a conflict might occur when two
similar configurations get assigned into two different abstract states.
This will be resolved in line 12 where two abstract states will be
combined.

Furthermore, the adjacency matrix, M, is updated based on the
connectivity of the corresponding configuration states. In line 15,
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AdjacentA keeps track of the adjacent abstract states which will
then update M in line 25. The adjacency matrix also store the tran-
sition relation(s) between two abstract states and the corresponding
configurations. The transition relation might not be unique if G con-
sists of cycles.

As a result, the computational complexity of the partition
algorithm is approximately O(dN |V |N+1), which consists of
O(dN |V |N ) from the forward search algorithm over the configu-
ration space of size |V |N where each configuration has O(dN) adja-
cent states, d denotes the average degrees of the vertices, and O(|V |)
from comparison of evader space in line 8. Although the number
might seem large, it is much smaller comparing to searching over
original belief space because the partition algorithm is only expo-
nential with respect to the number of pursuers, which is commonly
known as curse of dimensionality in multi-robot motion planning
problem. In the next section, we will explain how to use the output
of the partition algorithm to synthesize the solution strategy.

4 Hierarchical algorithm
To synthesize the strategy using the abstraction framework, we first
search for the strategy in the abstract state space and then refine the
strategy into the configuration space. If the number of pursuers, N
is given, planning in abstraction framework would either return the
strategy or indicate that no solution exists for the given N . The search
for strategy in the abstract state space can be done using existing
techniques for graph-based searching such as Dijkstra’s algorithm.
We will describe the abstract belief space for planning in the abstract
state space in section 4.1, and then discuss the refinement step in
section 4.2.

4.1 Planning in the abstract state space
The abstract belief state for the abstract state space, denoted by xS ,
becomes a pair of the abstract state (s) and the list of contaminated
regions (L), where each region represents a set of adjacent vertices
of the evader space.

xS = (s, L), L = {sj}.

The update step during planning will keep track of the contam-
inated regions using the information stored in the adjacency matrix
M. Since the transition relation ρ may not be unique, the update step
with input sk has to be called for each ρ stored in M(st, sk).

Update(xS,t, sk, ρ) :

Lt+1 = {sjk | ∃sit ∈ Lt, (s
i
t, s

j
k) ∈ ρ}

xS,t+1 = (sk, Lt+1)

The solution strategy is a sequence of abstract belief states such
that the list of contaminated regions eventually becomes empty, de-
noted by πS = (ai1 , {a

j
i1
}), (ai2 , {a

j
i2
}), ..., (aik , ∅). We will then

describe how to map the solution strategy into the strategy on a graph
with the refinement process on the following section.

4.2 Refinement
The information stored in M provides the boundary configurations
representing the transition between abstract states. Given the se-
quence of abstract states, the entering configuration might not be ad-
jacent to the leaving one. For instance, in Figure 8, the incoming and

? 

Figure 8: The transition between abstract states represents the action
between boundary configurations, however, the incoming
configuration need not be adjacent to the outgoing one. Hence, the
refinement step is necessary to find the trajectories between them.

outgoing configuration of abstract state sj are not adjacent. Thus, the
refinement step is required to find the trajectory from the incoming to
outgoing configuration such that all intermediate configurations are
the member of sj .

Using mapping function γ, one method for refinement is to per-
form the forward search inside each abstract state to find the tra-
jectory from the incoming to outgoing configurations. However, this
method might be inefficient since we already expand the full config-
uration space while executing partition algorithm.

An alternative method is to store information of the spanning trees
of each abstract state during the partition algorithm and then search
for the trajectory on the spanning trees during refinement. The down-
side of this method is that the result is usually suboptimal compared
with one from forward search method.

Given the strategy πA = {s0, s1, s2, ..., sk} where γ(pI) = s0,
the refinement then first searches for a trajectory from pI to the
boundary configuration connecting to s1 while remaining within s0.
Then, we continue refine the solution inside s1 from the incoming
configuration from s0 to the outgoing configuration connecting to
s2 while remaining within s1. The same process continues until we
reach the final abstract state sk.

4.3 Minimizing the number of pursuers
The full algorithm for synthesizing the solution strategy is given in
algorithm 2 where the number of pursuers, N , required is unknown.
Note that incrementing N by one at each iteration is more efficient
that doing binary search because the computational complexity is
exponential with respect to N .

Algorithm 2 Hierarchical Strategy Synthesis

1: Construct G of free space F with sensor model O(·)
2: N ← 1,πS ← [ ]
3: while πS is empty do
4: Partition GN into abstract state space S
5: πS ← Planning(S,pI)
6: Increment N
7: end while
8: π ← Refine(πS)

5 Results
The construction of graph representation is implemented in MAT-
LAB, whereas the remaining components are implemented in C++.
We validate the proposed method in simulations with environments
of varying topologies and using different number of pursuers as dis-
cussed in section 5.1. Then, we compare our results with the graph-
based searching over the full belief space on simple environments in
section 5.2.
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5.1 Simulation Results
We evaluated the performance in simulation on environments with
three different topologies as show in Figure 9. Each pursuer has a
disc sensor footprint with a radius of one meter. Due to various struc-
tures of the environments, we represent their dimensions with the
number of vertices in the graph representation. Figure 9(c) illustrates
the graph representation of the testing environments and the sensor
footprint of the pursuer. The number of pursuers required in each
environment is computed by iterating from N = 1.

(a) (b) (c)

Figure 9: Testing Environments: (a) Tree Structures; (b) Ladder
Structures; (c) Random Loops Structures with graph representation

5.1.1 Tree Structures

We evaluated on the tree structures with varying number k and width
w of branches (vertical corridors). The graph representations contain
8−48 vertices. It requires 2 pursuers to clear the map for w = 1 and
3 pursuers to clear the map for w = 2. The execution times of each
component are illustrated in Figure 10.

Figure 10: The execution time of the proposed method on tree
structure with k branches of width w using N pursuers on graph
with V vertices.

5.1.2 Ladder Structures

We evaluated on the ladder structures with varying number k and
width, w, of steps (vertical corridors). The graph representations con-
tain 30−52 vertices. For ladder with single loop k = 2, it requires 2
pursuers to clear the map with w = 1 and 3 pursuers to clear the map
with w = 2. If the ladder with multiple loops k > 2, it requires 3
pursuers to clear the map with w = 1 and 4 pursuers to clear the map
with w = 2. The execution times of each component are illustrated
in Figure 11.

Figure 11: The execution time of proposed method on ladder
structure with k steps of width w using N pursuers on graph with V
vertices.

5.1.3 Random Loop Structures

We evaluated the proposed methods on two maps shown in 9(c) us-
ing 4 pursuers for the top one, which consists of 46 vertices, and
5 pursuers for the bottom map, which consists of 53 vertices. The
total execution times are 105.59 and 4076.32 seconds, in which ab-
straction framework are accounted for 103.25 and 4074.44 seconds
respectively. The intermediate steps during the clearing process are
shown in Figure 12 and Figure 13.

(a) Iteration: 10 (b) Iteration: 30

(c) Iteration: 100 (d) Final Iteration (147)

Figure 12: Snapshots of clearing process on 3× 4 grid map with all
narrow passages using 4 pursuers.

As explained in section 4.2, one the main disadvantages of refine-
ment using spanning tree is the lengthy strategy as indicated by a
high number of iteration in both examples. This strategy can be fur-
ther improved; however, this is out the scope of this paper.

The simulation results show that the abstraction framework is re-
sponsible for the majority of computation time as N increases, which
conforms with our analysis on computational complexity of the par-
tition algorithm. Nevertheless, the abstraction framework only needs
to be executed once for each given map with the same number of
pursuers. It is invariant of the initial position and thus we can quickly
synthesize the strategy again for different initial position. This can
be useful if an error occurs while executing the solution strategy and
the pursuers are deviated from the planned strategy.
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(a) Iteration: 30 (b) Iteration: 70

(c) Iteration: 250 (d) Final iteration (309)

Figure 13: Snapshots of clearing process on curved hallway with
vary passages size using 5 pursuers.

5.2 Comparison

We compare the results of our proposed algorithm with a baseline
(brute force) planner which searches for a strategy on the full belief
space, described in section 2.2. We used maps with tree and ladder
structures. The baseline planner can only solve the maps containing
up to 2 branches (13 vertices) for tree structure and the maps con-
taining one loop (14 vertices).

Map Our framework Baseline planner
Tree with 1 branch, V= 8 0.014 0.04

Tree with 2 branches, V=13 0.034 49.95
Ladder with 2 steps, V=14 0.018 1082.77

Table 1: Comparison of execution time (sec) between our framework
and baseline (brute force) planner.

The execution time of the baseline planner grows exponentially as
V increases. Additionally, the baseline planner suffers greatly from
the topological invariant of the loop structure (such as a ladder) due
to a large reachable states of the contamination space. On the other
hand, our framework reduces the configuration space of 2 pursuers
with one loop into only two abstract states; one for two pursuers be-
ing adjacent and other when they are separated.

6 Conclusion and Future Work

In this paper, we proposed an abstraction framework to solve a worst-
case adversarial pursuit-evasion problem where multiple pursuers
with limited-range sensor coverage are used to detect all possible
mobile evaders. This method involves constructing the graph repre-
sentation of an environment using the sensor model equipped on the
pursuers, partitioning the configuration space of the pursuers over
graph into an abstract state space, searching for a strategy in the ab-
stract state space, and finally refine the strategy into the configuration
space. We validate our proposed method by simulating environments
with different topologies and compare the result with a brute force
searching over the full belief space. Since the full belief space grows
exponentially with N and the number of vertices in V , the brute force
search can only solve PE problems on small maps (|V | < 20) for

N = 2. In contrast, our approach reduces the complexity into expo-
nential of N with base |V | and can solve the PE problems with a few
hundred vertices for N = 2 and up to 50 vertices for N = 5.

Although the abstraction framework requires inspecting the full
configuration space of N pursuers, this step needs to be done only
once for a given map with the same number of pursuers. The output
can be reused for different initial configurations. Furthermore, we
observe that many maps with the similar structure yield the same ab-
straction. This opens up an interesting problem of how can we apply
the result of one abstraction framework to the new maps with simi-
lar structure without recomputing it. Additionally, we are interested
in converting an abstraction framework into an on-line algorithms so
that we can concurrently synthesize for the solution strategy, which
may avoid exploring the entire configuration space.
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