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Abstract

Constructing plans that can handle multiple problem instances is a longstand-
ing open problem in AI. We present a framework for generalized planning that
captures the notion of algorithm-like plans and unifies various approaches de-
veloped for addressing this problem. Using this framework, and building on the
TVLA system for static analysis of programs, we develop a novel approach for
computing generalizations of classical plans by identifying sequences of actions
that will make measurable progress when placed in a loop. In a wide class of
problems that we characterize formally in the paper, these methods allow us to
find generalized plans with loops for solving problem instances of unbounded
sizes and also to determine the correctness and applicability of the computed
generalized plans. We demonstrate the scope and scalability of the proposed
approach on a wide range of planning problems.

Keywords: Automated Planning, Plans with loops, Plan Verification

1. Introduction

Over the years, many researchers have addressed the problem of constructing
a generalized plan that solves many different planning problems. The fundamen-
tal motivation for finding generalized plans stems from classical planning itself.
Consider the simple planning problem of unstacking a tower of blocks. Given
a problem instance with 3 blocks, with block b3 on block bs, and by on by, the
solution plan would be: moveToTable(bs), moveToTable(bs). The problem of
classical planning is to find such solution plans for specific problem instances
like the three block tower described above. Classical planners tend to suffer
significant slowdowns as the number of blocks in such problems is increased.
However, many such problems can be addressed by identifying common pat-
terns in solutions, which can be executed repeatedly with minor modifications
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to solve larger problems. Approaches for finding generalized plans aim to iden-
tify such common solution and problem structures for efficiently solving new
problem instances.

For instance, a generalized formulation of the unstacking problem would be
to unstack a tower with an unknown number of blocks, or even a set of towers
with unknown numbers of blocks in each. Intuitively, such problems can be
“solved” by algorithmic plans such as the following “Unstack” plan:

Unstack = while(3b(clear(b) A —on-table(b)) : moveToTable(b)

1.1. An Execution Model For Generalized Plans

The Unstack plan described above contains the basic idea of how to solve any
unstacking problem. However, it cannot be directly executed on a particular
instance of the problem. For example, let I be an instance of the unstacking
problem. To apply Unstack to I we would first check whether there exists a
block that matches the condition of the while loop (a block that is clear and
not already on the table). If so, we must choose such a block, by, and apply the
action a; = moveToTable(by). These operations need to be repeated as long as
possible, thus generating a complete plan, P = ajas - - - ai. (Note that Unstack
happens to be a nondeterministic generalized plan: given an instance consisting
of several towers of height greater than one, at each step Unstack may choose
the top of any such tower to move to the table.)

Fig. 1 extends this approach to a generic model for executing a generalized
plan. In this figure, the “world” represents the system on which the plan will be
executed, and a problem instance is a completely specified state of this system.
At any step during plan execution, the current state of the world can be taken
into account while computing the next action to be executed; execution starts
with the initial state Sy and terminates with a special termination action (af)?.

The generalized plan therefore executes a policy with termination actions
which maps sequences of states to actions. Formally, let S be the set of states
in a domain, and A the set of domain actions. A policy P with termination
actions is a function P : * — AU{ay} with the restriction that for any S; € S*,
if we have P(S1) = ay, then P(S152) = ay for all S € S*. This definition, and
the subsequent formalization of generalized plans can be extended to partially
observable settings by replacing the set of states with a set of observations. The
focus of this paper, however, is on completely observable settings.

In deterministic situations, effects of actions on the world can be simulated.
Consequently, in such settings generalized plans can be instantiated completely
for any initial state by simulating plan execution. In the following development
our focus will be on deterministic environments; however, during the process of

1Fig.1 suggests a formal model of a generalized-plan automaton (GPA) interacting in
phases with a world-model automaton (WMA): at each round, WMA sends its world state
to GPA which transfers to a new program state and sends an action that the WMA then
executes. The details of this automaton model are straightforward and we do not go into
them here.
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Figure 1: Execution model for generalized plans in deterministic domains

planning we will work with abstract representations of sets of states similar to
belief states as used in planning with partial observability. We discuss how non-
determinism and partial observability can be captured in our general approach
in section 4.3.

1.2. Architecture of Generalized Plans

Any generalized plan can thus be understood as consisting of two compo-
nents: (1) a control-structure for representing control knowledge and, (2), a
method for instantiation which uses this control-structure to compute a pol-
icy with termination actions. We will present a formally well-defined class of
generalized plans with this architecture, called graph-based generalized plans
(Definition 3) in the next section.

In general, the control-structure component of a generalized plan can be used
to store specific algorithms for the class of problem instances of interest (such
as a formal representation of the algorithmic plan string of the Unstack plan
shown above), or more general domain-control-knowledge (Baier et al., 2007).
A generalized plan need not provide the guarantee that all its instantiations
will be finite. Plan execution or even a complete offline instantiation of the
plan may therefore never terminate. On the other hand, the fact that a plan’s
instantiation method terminates need not imply that it will always achieve the
goal. Proving that a generalized plan is “correct” in the sense of reaching a
goal state starting from a given problem instance therefore subsumes proofs of
termination as well as goal-reachability.

This architecture of generalized plans unifies various approaches for “effi-
ciently” producing “good” plans for classes of problems. Approaches for macro
tabulation such as Triangle Tables (Fikes et al., 1972), or plan compilation such
as case-based planning (CBP (Spalazzi, 2001)) can also be understood as devel-
oping control-structures in order to utilize instantiation methods more efficient
than classical planners. Recent approaches like KPLANNER (Levesque, 2005)
and loopDISTILL (Winner and Veloso, 2007) aim to extend the applicability of



generalized plans to unbounded classes of problems by including loops of actions
in the generalized plan’s control-structure. Planning with hierarchical task net-
works (HTNs (Erol et al., 1994)) can also be considered as generalized planning
with the input task network as a non-deterministic control-structure and an
HTN planner as the associated method for instantiation.

1.8. Ewaluation Criteria for Generalized Plans

Trivially, classical planners can also be used as generalized plans with empty
control-structures and instantiation methods based on heuristic search. Classi-
cal planners therefore fit naturally into the broad notion of generalized plans by
being able to generate a plan for every solvable problem instance, but suffer from
expensive methods for instantiation. On the other hand the Unstack algorithm
discussed above, is a very specific generalized plan which produces output plans
much more efficiently for the problem instances that it can solve. In general, a
generalized plan may not solve all the possible problem instances of interest, but
it may be computationally much more efficient than a classical planner on the
problem instances that it does solve. The benefit of such generalized plans rests
on the availability of efficient tests for determining if a given problem instance
falls under a given generalized plan’s capability. For the Unstack plan, this can
be tested efficiently: the goal of the problem should be to have all blocks on the
table.

As the discussion above reveals, unlike classical plans, the utility of gener-
alized plans depends on several conflicting factors. We list these factors below
and discuss each in turn:

Complexity of checking applicability The computational cost of determin-
ing if a generalized plan can solve a given problem instance.

Complexity of plan instantiation The total computational cost incurred by
the method for instantiation for a given problem instance.

Quality of instantiation A measure of the cost of executing the sequence of
actions produced by a generalized plan for a given problem instance.

Domain coverage A measure of the size of the set of solvable problem in-
stances that a generalized plan can solve.

Complexity of computing the generalized plan The computational cost
of computing the generalized plan itself.

Complexity of checking applicability An applicability test for a general-
ized plan is a procedure which takes as its input a problem instance and returns
True or False as its output, reflecting whether or not the generalized plan can
solve the given problem instance. The complexity of checking applicability is
the computational complexity of this procedure. A generalized plan can be de-
signed to proceed in one of two ways when given an input problem instance: (1)
conduct a pre-designed applicability test to determine if an instantiation will



be possible, and if so, proceed to find it, or, (2) directly attempt an instanti-
ation. The problem with the second approach is that instantiation can be an
expensive and wasteful operation if the generalized plan cannot actually solve
the given problem instance. While the first approach is desirable, it is often
very difficult to construct an applicability test; the ideal situation would be to
have a linear-time or better applicability test.

Approaches for finding generalized plans seldom offer applicability tests.
KPLANNER (Levesque, 2005), as an exception, provides a partial test: within the
user-requested bounds on a unique parameter that its input problem instances
are allowed to vary over, its generalized plans are guaranteed to produce a cor-
rect instantiation. Approaches like case-based planning (Spalazzi, 2001) incur
large costs of applicability and instantiation while retrieving and adapting pre-
viously observed, potentially applicable plans.

Complexity of plan instantiation The complexity of plan instantiation
is the total computational cost of executing the method for instantiation for
a given problem instance. This factor distinguishes more desirable generalized
plans like Unstack above, with an instantiation-complexity linear in the number
of blocks (using a list of topmost blocks), from classical planners whose worst-
case complexity of instantiation is exponential in the number of objects.

Quality of the instantiation The quality of instantiation of a generalized
plan determines its usability on a problem relative to any available alternative
solutions. Ideally, the sequence of actions produced by a generalized plan for
a given problem should be optimal according to a measure such as the number
of actions or their cost. However, in settings where no alternative solutions
are available, any instantiation which solves a given problem instance may be
desirable.

Domain coverage A concrete plan produced by a classical planner can also
be used as a generalized plan by treating the plan itself as the control-structure,
and a method that incrementally outputs successive actions from the plan as
the method for instantiation. In fact, such generalized plans score very well
along all the factors discussed so far, even though they typically work for only
one problem instance. The domain coverage of a generalized plan evaluates it
along one of the most fundamental motivations behind generalized planning:
the extent to which the plan is “generalized”.

Formally, we first categorize two solvable problem instances as distinct if
the set of shortest action-sequences for solving each of them have an empty
intersection. In other words, a problem instance is distinct from another if
the two require distinct shortest length solutions. Using this definition, we can
define the size-n domain coverage (D,,(II)) of a generalized plan II as the ratio
of the number of problem instances with n elements that the generalized plan
can solve (S, (II)), with the total number of solvable problem instances with
n elements (T, (IT)). The asymptotic domain coverage (D(II)) of a generalized
plan is defined as the limit of this ratio:




The goal of increasing the domain coverage of a generalized plan has re-
ceived significant attention, starting with initial work by Fikes et al. (1972).
Conditional plans typically have a greater domain coverage than classical plans.
However, as we discuss below, their coverage is ultimately limited due to their
limited expressiveness.

Complexity of computing a generalized plan The complexity of con-
structing a generalized plan depends on the computational complexity of repre-
senting its control-structure. A contingent plan (Peot and Smith, 1992; Bonet
and Geffner, 2000) can be used as the control-structure of a generalized plan.
Such a generalized plan would have a clear applicability test (by definition, it
would solve all instances of the initial belief state used while computing the
contingent plan) and a low cost of instantiation. However tree-structured rep-
resentations used for expressing contingent plans can grow exponentially with
every unknown predicate tuple, making such plans inherently more difficult to
find. Plan representation thus becomes an important factor when considering
the complexity of deriving a generalized plan itself. Approaches like DISTILL,
KPLANNER, and BAGGER2 (Shavlik, 1990) mitigate this cost by construct-
ing plans with loops that can instantiate into larger concrete plans. While
adding loops can significantly reduce the size of the control-structure used in
a generalized plan and increase its domain coverage, it can in general have ad-
verse effects on plan applicability tests and make such plans unreliable. This
is because plans with loops and branches approach the expressive power of
programs—determining when they will work, or even terminate is thus unde-
cidable in general for such plans. HTN’s learned using algorithms such as HTN-
MAKER (Hogg et al., 2008) can also encode cyclic or recursive task decompo-
sitions. However, these approaches do not address the problem of computing
applicability tests and incur further costs of instantiation when HTN planners
compute solutions from the learned structures.

These five factors together determine the quality and usability of a general-
ized plan. In the rest of this paper, we describe an approach which addresses
the problems associated with all of these factors except for the quality of in-
stantiations, which will be addressed in future work. Our approach draws upon
plans for concrete problem instances while creating generalized plans; as such,
the quality of instantiations of the resulting plans will depend on these input
plans.

1.4. Overview of Our Approach

Fig. 2 shows an overview of our approach. Its input is a classical plan which
works for a particular concrete state. As the first step in generalization, we
compute and add choice actions for selecting the arguments of every action in
the input plan. This gives us a linear generalization of the input plan. Next,
we apply this linear generalized plan on an abstract state which represents a
collection of states including the initial state for which the original plan worked.
Action application on an abstract state works along the lines of action applica-
tion on belief states in contingent planning and may produce multiple possible



Classical Plan

Add Choice Actions, | Linear Trace in Abstract Space .| Gen Plan w/
"| Gen Plan Branches

Identify Progressive Loops

Gen Plan w/ Compute Preconditions Gen Plan w/

Branches & Loops " |Branches, Loops & Preconditions

Figure 2: Schematic representation of the overall approach

resulting abstract states. At each step, we keep the abstract state that is con-
sistent with the result of application of the concrete plan on the concrete initial
state at that step. Other possible action outcomes are recorded as branches
leading to outcomes not handled by this example plan. This process (which we
call tracing) reveals the effect of the given plan on a class of states. At the same
time, because of an abstracted representation, recurring properties become evi-
dent as easily identifiable, recurring abstract states. A recurring abstract state
is our fundamental cue for identifying a potential loop: it indicates that the se-
quence of actions lying between the two occurrences can be re-applied. At this
point, we need to determine if a loop consisting of this sequence of actions will
(a) terminate, and if so, determine the termination conditions, and, (b) make
progress towards the goal state.

As the core of our approach, we present methods for efficiently determining
answers to both of these problems for a class of problem domains. The first
problem is addressed by using changes in the number of objects satisfying cer-
tain properties as a measure of progress leading to proofs of termination, akin
to related work in model checking such as Terminator (Cook et al., 2006). For
addressing the second problem, we propose a novel approach for finding plan pre-
conditions, expressed as combinations of abstract states and linear constraints
between constants and counts of objects of certain types. The final guarantee
on our computed plans is that they will achieve the goal when applied to any
concrete state that is represented by the abstract initial state and satisfies the
computed conditions on object counts. We call the resulting approach for gen-
eralizing example plans ARANDA-Learn (based on the name of an Australian
tribe whose number system captures a similar abstraction).

The rest of this paper is organized as follows. The next section presents
our formal framework for representing concrete states, actions and generalized
plans. This is followed by a description of a state abstraction technique from
software model checking (TVLA (Sagiv et al., 2002)) that allows us to represent
unbounded numbers of objects and to identify recurring state properties, or loop
invariants (Section 3). Section 4 describes a system for making action applica-
tion on abstract states more precise. Our approach for finding preconditions of
plans with simple loops is described in Section 5, followed by a description of the
algorithm for plan generalization in Section 6. Section 7 presents experimental
results obtained using an implementation of this approach. This is followed by



a discussion of related work (Section 8) and conclusions (Section 9).

2. Formal Framework

We begin this section by describing the standard, logic-based framework that
we use to describe planning. This framework uses two-valued logical structures
to represent concrete states and predicate update formulas to represent action
updates. We describe our representation of generalized plans in Section 2.1. In
subsequent development (Section 3), we will use three-valued logical structures
(or “abstract” structures) to represent sets of structures compactly. Throughout
this paper, we will use the terms “state” and “structure” interchangeably.
Running Example Consider a unit delivery problem where some crates are at
a dock and need to be delivered to their respective destinations via trucks that
can only hold one crate at a time.

The state of such a delivery problem is a logical structure of vocabulary V; =
{crate!, truck', loct, done', destination?, in?, at?; dock}, consisting of a constant,
dock, and predicates whose intuitive meanings are as follows:

e crate(x), loc(x), truck(x): x is a crate, location, or truck, respectively.
e done(x): object x has been delivered.

e destination(x,y): y is the target destination of crate x.

e in(x,y): object x is in truck y.

e at(x,y): object z is at location y.

The delivery domain has the following actions: Aq = (Move?, Load®, Unload")
with the following intuitive meanings:

e Move(x,y): drive truck = to location y.
e Load(x,y): load crate x into truck y.
e Unload(x): unload the contents of truck x.

Each action a consists of a precondition pre(a) and update formulas, up(p, a),
defining the new value of each predicate p after a has been applied. For example,
the following is the definition of the action Mowve:

pre(Move(z,y)) = truck(x) Aloc(y) A —at(z,y)
up(at(u,v), Move(z,y)) = [-at(u,v) A (v=yA (u=2xVin(u,x)))]
Vo Jat(u,v) A o(uw =2z Vin(u,x))]

This update states that an object u is at location v after a Move(x, y) operation
iff: either, (a) it was not at v before and v is in fact y, and w is either the truck
or an object in the truck z, or, (b) it was at v before Move, and it is neither the



truck x nor an object in the truck. The in predicate is updated similarly by the
Load and Unload actions. The Unload action also includes an update for done,
which is set for the crate being unloaded if the truck is at its destination.

We use the notation up, to denote the set of all the update formulas for an
action, and up,(s) to denote the result of applying those formulas on a structure
s. Throughout this paper, we will represent the update formula for the predicate
p—such as the above update formula for the predicate at—in the following form,
where p’ denotes the predicate after action application:

=l AALL VDA DA (1)

Here A;f , denotes the conditions under which predicate p is changed to true
on action a, and A, denotes the conditions under which it is changed to false.
Intuitively, Eq. 1 states that p becomes true for a tuple iff either (a) it was false
and action a changes it to true, or, (b) it was already true, and is not removed by
action a. In our implementation, constants are represented as unary predicates
that are constrained to be unique. They can thus be updated in a manner
similar to predicates, using Eq. 1.

In addition to defining the vocabulary and actions of a planning problem,
we typically include an integrity constraint that specifies the set of valid states.
In the abstraction these constraints will be used to clarify the set of concrete
states represented by an abstract state.

For example, the integrity constraint, K4 for our unit delivery is the univer-
sally quantified conjunction of the following formulas:

done(x crate(x)

/

destination(x,y) A destination(x,y crate(z) A loc(y) Ny =y
Fy(destination(z, y))

loc(y) A (crate(z) V truck(z)) Ay =y’
Ty (at(z, )

—  crate(z) A truck(y) Nz = x

crate(x
at(z,y) A at(z,y’
crate(x) V truck(z

in(z,y) A ina’, y

A

/

—_ D D e

Generalizing the above example, we formally define a domain schema for a
planning problem as follows:

Definition 1 (Domain schema) A domain schema is a tuple D = (V, A, K)
where V is a vocabulary, A is a set of actions expressed in first-order logic
with transitive closure (FO(TC)), and K is an integrity constraint expressed in
FO(TC).

FO(TC) allows us to use the transitive closure of binary relations in integrity
constraints, which would not have been possible using first-order logic alone.

We use transitive closure to express connectivity properties such as the transitive
closure of on (“above”) in the blocks world (see the Striped Block Tower, Green
Block and Hall-A problems in Section 7 and Appendix A).



Define STRUCID], to be the set of concrete structures of the domain schema,
D, i.e., the set of finite structures of vocabulary V' that satisfy K.

For example, the domain schema of the unit delivery problem is D; =
(Va, Adq, Kq). We next define a generalized planning problem as follows:

Definition 2 (Generalized planning problem) A generalized planning problem
is a tuple (o, D, v) where « is an FO(TC) formula describing the possible initial
states, D is the domain schema, and « is an FO(TC) formula specifying the goal
states.

Following the discussion in the introduction, an instance of the general-
ized planning problem is a concrete initial state, or in other words, a state
satisfying the formula a. The unit delivery problem can now be specified as
Pa = (a4, D4, va) where

ag = Jz(truck(x)) AVx((crate(x) V truck(z)) — at(x, dock))
Yo = Vax(crate(r) — done(z))

2.1. Generalized Plans

Solutions to generalized planning problems are called generalized plans. In-
tuitively, a generalized plan is an algorithm. We represent the control-structure
of a generalized plan using a graph representation. Formally,

Definition 3 (Graph-Based Generalized plan) A graph-based generalized plan
IT = (V,E,{,s,T) is defined as a tuple where V and E are respectively, the
vertices and edges of a finite connected, directed graph; £ is a function mapping
nodes to actions and edges to conditions; s is the start node and T a set of
terminal nodes.

We discuss the method of instantiation of graph-based generalized plans
below. In the rest of this paper, all references to generalized plans refer to graph-
based generalized plans. This representation of actions and plans is similar
to situation calculus (Levesque et al., 1998) and Golog programs (Levesque
et al., 1997). However, a significant difference between our framework and
Golog programs is that we automatically generate edge labels (in the form of
summarized, abstract structures) representing the set of concrete states that
can provably be solved by the generalized plan starting with the subsequent
node’s action. Further, while Golog programs are typically hand-coded, albeit
sometimes in a partially specified manner, our objective is to automatically find
generalized plans and the class of problem instances where they will work.

Fig. 3 shows a generalized plan for the delivery problem. A generalized plan
can include choice actions for choosing objects to be used as arguments for
future actions. These actions select an object which satisfies a given formula
in first-order logic, and assign it to a constant used in action update formu-
las. Intuitively, if multiple objects satisfy the formula used for selection, we

10
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Figure 3: A generalized plan for delivery. The start node is labeled choose t: truck(t).

require that the generalized plan should work with any of those qualifying ob-
jects. Choice actions are discussed in detail in Section 4.2; they are constructed
automatically in our approach for generalized planning (Section 6.1).

In general, compound node labels consisting of multiple actions and choice
actions can be used for ease of expression. For simplicity, we allow only a single
action per node.

2.1.1. Instantiation of Graph-Based Generalized Plans

A generalized plan’s control configuration is given by a tuple (pc, S, i) where
pc € V is the current control node, S, the problem state for which an action
has to be produced; and 4, an instantiation mapping the arguments of £(pc) to
elements of the state S. As mentioned above, the instantiation 7 is constructed
using choice actions (Section 4.2). A control configuration determines the next
action to be executed as the action ¢(pc) with the arguments represented by
i. Successive instantiated actions are produced by taking as input, the state
resulting from an execution of the previous instantiated action, and following
the edge in the generalized plan whose conditions are satisfied by this state,
starting with the initial node s. After executing the action at a node u € V', the
next possible control nodes are those neighbors v of u for which the condition
£({u,v)), and the preconditions of action £(v) are both satisfied by the current
state S with the current instantiation i. We assume the existence of default
edges leading to a terminal (trap) state labeled with a termination action, which
are taken when suitable next nodes cannot be found in the generalized plan or
when an action node is reached without an instantiation for all of its action’s
arguments.

A generalized plan solves a problem instance C' (that is, a concrete initial
state) if the execution of every possible instantiation of the plan on C ends with
a structure satisfying the goal. A generalized plan is non-deterministic if it has
two edges leaving some node, with overlapping conditions.

11



In general, it is undecidable to determine the preconditions of a generalized
plan because of the undecidability of the halting problem and the fact that a
generalized plan can be used to represent an arbitrary program. However, in
practice we finesse this problem by only considering finite domains. In par-
ticular, we call a generalized planning problem “finitary” if for every problem
instance C, the set of reachable states is finite. The simplest way of impos-
ing this constraint is to bound the number of new objects that can be created
(or found, in case of partial observability). Finitary domains capture most
real-world situations and have a decidable halting problem. In particular, the
language consisting of instances that a generalized plan solves in a finitary do-
main is decidable. This is because in these domains we can maintain a list of
visited states (which has to be finite), and identify non-terminating behavior if
a state is revisited. We formalize this notion with the following observation:
Observation 1 (Decidability in finitary domains) The halting problem and the
set of problem instances solved by any generalized plan in a finitary domain is
decidable.

3. State Abstraction Using 3-Valued Logic

We now describe a method for state abstraction which can be used to repre-
sent unbounded sets of concrete states compactly. This technique was originally
developed as a part of the TVLA system (Sagiv et al., 2002) for static analysis.
While this approach significantly increases the expressive power of finite logical
structures, it also makes the effects of action updates on abstract states impre-
cise. In the next section (Section 4), we present a method for alleviating this
problem.

The TVLA system represents sets of concrete structures using a single,
bounded-size three-valued logical structure. In a 3-valued structure, each tu-
ple may be present in a relation with definite logical values 1 (present), 0 (not
present), or indefinite value % (perhaps present). In the following formalization,
we will use the symbol |S| to denote the universe of a structure S, [¢]s to
denote the truth value of a formula ¢ in S, and [c;]s to be the unique element
in | S| corresponding to a constant c; in its vocabulary.

Definition 4 (3-valued Structure) A 3-valued structure, also called an abstract
structure, S over vocabulary V = (p{',...,p%";c1,...,¢) with predicates py,
.., pr of arities aq,...,a, respectively, consists of a non-empty universe |S|,
and for every predicate symbol p;* and tuple (uq,...,uq,;) € |S]|*, a truth value
[p(us, ..., ux)]s € {0,1, 3}, and for every constant symbol ¢; an element of the
universe, [¢;]s € |5].

The equality relation in a three-valued structure distinguishes summary el-
ements, s € |S|, which may represent more than one element of a concrete
structure, from non-summary elements, n € |S|, which must represent a unique
element. Summary elements satisfy [s = s]s = %, whereas non-summary ele-
ments satisfy [n = n]gs = 1.

12
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Figure 4: Abstraction in the delivery domain

Example 1 Fig. 4 shows a diagram of a concrete structure, C, representing a
state in a unit delivery problem. The universe of C' consists of three crates
(C1,C4,Cs), one truck, one dock, and three locations (Lq, Lo, L3). A three-
valued structure, S, is shown on the right. The double circles represent summary
locations. The solid arrows represent truth values of “1” and the dotted arrows
represent truth values of “%”. Intuitively, because of the summary elements, the
abstract structure S represents the concrete structure, C, as well as all other
unit delivery problems that have exactly one truck, with the truck at the dock
and empty, and at least one location different from the dock.

To define what it means for one structure to represent another structure, we
first define the information ordering: “z < y” to mean that y is more general
than z, ie, y = % and z € {0,1}. Let z <y mean that z < y or z = y.

Structure Sy represents structure Sy iff S7 is embeddable in S>. An embed-
ding is a map from |S;| onto |S2| that is monotonic with respect to <, i.e. truth
does not change, but it may become less precise:

Definition 5 (Embeddings) The function f : |Si| . |S2| embeds Si in Sy
(S ©F Sy) iff for all relation symbols p® and elements, uy,...,u, € |Si],
[p(u1, ..., ua)]s, = [p(f(u1),..., f(ug))]s, and for every constant symbol c,

f([[c]]sl) = HCHST
For dom D = (V, A, K), we use the notation,
vw(S) = {CeSTRUCD] | 3f:CC/ S}

to denote the set of (concrete) structures of D that are represented by S. When
D is understood, we just write y(5).

In a domain schema, a subset of the unary predicates, A, is identified as the
set of abstraction predicates. The abstraction process that we describe below
may obscure some of a state’s properties, but always represents its abstraction
predicates accurately. Selecting abstractions to correctly highlight the most
signifcant properties of a problem domain while obscuring any irrelevant ones
is a longstanding and widely appreciated problem in Al, and is beyond the
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scope of the current paper. The function of abstraction predicates suggests that
we should have sufficient abstraction predicates to be able to determine if an
abstract state satisfies the goal condition. This can help in choosing the set of
abstraction predicates for a domain. However, in all the examples used in this
paper, the set of abstraction predicates is exactly the set of unary predicates in
the domain.

Definition 6 (Role) The role of an element a € |S| is the set of abstraction
predicates that it satisfies and the set of constants that it is equal to:

role(a) = {piceA | [pi(a)]s =1} U {¢; | [ej]ls =a} .

For example, in Fig.4 elements C7,C5,C3 of the universe have the role
{crate}, t has the role {truck}, Li, Lo, L3 have the role {loc}, and d has the
role {loc,dock}. In the following development, we will measure the progress
made by loops of actions in terms of changes in the number of objects satisfying
each role.

Fach concrete structure C' is represented by its canonical abstraction: the
most precise abstract structure in which all elements of C' with the same role are
merged together into a summary element of that role (since exactly one element
in a structure can represent a constant, constants will always be interpreted as
non-summary elements):

Definition 7 (Canonical Abstraction) The canonical abstraction of a concrete
structure C' is S = canon(C) with |S| = {e, : Ju € |C|(r = role(u))}, with
embedding C' C/ S such that:

1. f(u) = €role(u)
2. [pler,...,e)]s = supj{[[p(ul,...,ua)]]c | flu) = e, = 1,...,(1},
for all predicate symbols p®.

Thus the truth value of r(ey,...e,) in S is the definite value 0 or 1, if C
agrees on that value of r(ug,...,u,) for all elements of C of the appropriate
roles. Otherwise, the value in S is % For example, in Fig.4, S = canon(C). In
general, suppose that C' is a concrete structure and S = canon(C). Then by the
above definition, e, is a summary element of S i.e., [e, = e.]s = %, iff C has
more than one element of role r. Furthermore, regardless of how large C is, |S]|
has no more than 2% elements where a is the total number of constant symbols
and abstraction predicates. Increasing the number of abstraction predicates
makes canonical abstractions more precise at the cost of increasing their size.

4. Action Application on Abstract states

We now present the methodology for applying action updates on abstract
states. We begin by describing TVLA’s focus and coerce operations, which
make abstract structures more precise prior to action application; we describe
how these operations are used in our system for generalized planning in Section
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Figure 5: Effect of focus and coerce with respect to ¢, a formula constrained to
hold for a unique element.

4.1.1, followed by a description of choice actions in Section 4.2. Finally, we
present a brief discussion of how this framework relates to, and can be used
for, modelling belief states and non-deterministic sensing actions of contingent
planning.

When applied to an abstract structure with imprecise truth values, update
formulas for actions might evaluate to % Propagation of the % truth value in this
way can quickly result in very imprecise structures with no useful information.
This is mitigated in TVLA using the focus and coerce operations.

4.1. Focus and Coerce

Given an abstract structure S and a formula ¢ on which we need precision,
a “focus” operation is defined as one that produces a set of possibly abstract
structures, Focus(S,$) = {S1,52,...Sk}, which capture exactly v(S) (the set
of concrete structures represented by S), and in each of which ¢ evaluates to a
definite truth value for any possible instantiation of its free variables. In general,
the set Focus(S, ¢) may be infinite. Consequently, there is no general algorithm
for focus.

The idea behind TVLA’s limited focus algorithm is illustrated on the top
row of Fig.5: if ¢() evaluates to 3 on a summary element, e, then this can be
captured by three different abstract structures corresponding to cases where:
either all of e satisfies ¢, or part of it does and part of it doesn’t, or none of
it does. Additional elements created during this process (as in Ss) inherit the
truth values of other predicates from the original summary element. Note that ¢
evaluates to a definite truth value for all elements in all of the structures (S1, So
and S3) produced by focus. The focus algorithm on a binary predicate, at most
one of whose arguments is a summary element, follows the same methodology.
In fact, this algorithm works in any situation where at most one of a predicate’s
free variables is interpreted with a summary element (the focus formulas used
in this paper satisfy this requirement). Otherwise, this algorithm does not
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terminate. The focus operation w.r.t. a set of formulas works by successive
focusing w.r.t. each formula in turn.

This process of splitting summary elements could produce structures that
violate the integrity constraints. TVLA’s coerce operation traverses the list of
focused structures. If any structure is inconsistent with the integrity constraints,
it is removed; otherwise, coerce attempts to make the truth values of predicates
in the structure more precise in order to satisfy the integrity constraints with
the truth value 1. Further descriptions of both focus and coerce operations can
be found at (Sagiv et al., 2002).

4.1.1. Action Specific Focus Formulas

Using focus prior to action application can improve the precision of action
updates. Recall that the predicate update formulas for an action operator take
the form shown in Eq. 1. For unary predicate updates, expressions for A;
and A; are monadic (i.e. have only one free variable, corresponding to the
free variable on the LHS, apart from action arguments whose values will be
constants when an action is applied). When applied on a structure with precise
truth values for abstraction predicates, an update of the form of Eq. 1 can result
in imprecise truth values for these predicates only if the formulas A* evaluate to
imprecise truth values. Consequently, in order to keep the abstraction predicates
precise, we focus on AT expressions prior to action application.

Therefore, in this paper, the set of focus formulas to be used prior to an
action update will be exactly the A* formulas for the abstraction predicate
updates. The fact that these formulas are monadic ensures that the focus al-
gorithm with these formulas terminates. We use F;, to denote this set of focus
formulas for an action a. We illustrate this choice of focus formulas using the
following example from the blocks world, since non-choice actions in the unit
delivery problem do not need focus formulas.

Example 2 Consider a blocks world domain schema with the vocabulary V =
{on?, topmost', onTable'}, and abstraction predicates {topmost, onTable}. Con-
sider the Move action which has has two arguments: obj;, the block to be moved,
and obj,, the block it will be placed on. The update formula for topmost is:

topmost' (r) = |[~topmost(x) A (on(objy,z) Az # objy)]
vV [topmost(x) A (x # obj,)]

Following the discussion above, the update formula for topmost can evaluate to
% because on(obj;, ) can evaluate to % in an abstract structure (see Fig. 15 on
page 39 for an example of an abstract structure in the blocks world). Conse-
quently, on(objy,x) A (z # objs) is the focus formula for Move() (note that this
subsumes the A~ portion of the second part of the disjunction). In effect, for
the focus operation, this formula is on(obj;, x) because x # obj, will evaluate to
a definite truth value for every instantiation of . This is because the constants
obj; and obj, will be assigned to singleton elements by choice actions prior to
the Move action.
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4.2. Isolating Action Arguments

The previous section described methods for making action updates precise
after suitable action arguments had been selected and labeled by constant sym-
bols. We will now describe how action arguments can be selected in an abstract
structure. This requires special techniques because elements of an abstract
structure can be summary elements representing sets of similar concrete ele-
ments. Actions however, are typically applied upon individual concrete ele-
ments. We use focus and coerce to develop an effective mechanism for drawing
out representative elements from their summary elements for later use as action
arguments.

Consider Fig.5. If integrity constraints restricted ¢ to be unique and satis-
fiable, then structure S3 in Fig.5 would be discarded by coerce. Further, the
summary elements for which ¢() holds in S; and Sy would be replaced by sin-
gletons. This would result in two structures, shown in the lower row in Fig. 5:
(1) 51, which has only one element with Role;, and ¢() holds for this element,
and (2) S5, which has multiple elements of Role;, for one of which ¢() holds. In
other words, this combination of focus and coerce yields two possible situations
depending on whether the summary element of Role; in Sy represents exactly
one, or more than one elements. This combination of focus and coerce simulates
a general “drawing-out” operation from a non-empty set whose cardinality is
unknown. A formal analysis of such focus operations and the necessity of clas-
sifying its outcomes by comparing certain role-counts with the constant 1 is
presented in Section 5.2 on page 27 (in particular, see Proposition 1 and the
following discussion).

From the point of view of action application, this operation has the effect
of chosing singleton elements from a role represented by a summary element;
these singletons can be used as action arguments. Choice actions of the form
“choose ¢: £(¢)” can therefore be implemented by applying the following steps
on a given structure. (“chosen” is a new predicate, with the integrity constraint
of uniqueness)

1. Set the chosen predicate: chosen'(z) = &(z) A §

2. Focus w.r.t chosen(x): This triggers drawing out operations if chosen
holds with the truth value % for a summary element, as discussed above.

3. Set the argument: for every resulting structure, set constant c¢ to the
element satisfying chosen.

Example 3 Consider the sequence of operations in Fig. 6 in a simplified version
of the delivery domain (we ignore the trucks and current positions of crates).
chosen(x) is initialized to % for all objects with the role crate in this figure.
The first focus operation illustrates the drawing out of an action argument from
its summary element, in this case, of role {crate}. A constant c is set to the
drawn out crate, concluding the choice operation. The second focus operation
focuses on destination(c, ), effectively creating possible cases for the destination
of crate c. Integrity constraints are used to assert that (a) chosen(z) must hold
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Figure 6: A sequence of focus operations in the delivery domain.

for a unique element, and (b) every crate has a unique destination, so that
coerce discards structures where ¢ has none, or non-unique destinations.

Note that in this example, different outcomes of focus operations can be
easily differentiated on the basis of the number of elements of a role (the two
possible outcomes of the first focus operation are characterized by whether or
not there are at least two objects with the role {crate}). This becomes useful
when we need to find the conditions under which an action branch leading to a
goal will be taken (Section 5).

Summary of Action Application on Abstract Structures The over-
all process of applying actions on abstract structures is shown in Fig.7. The
abstract structure is first focused w.r.t. action-specific focus formulas. The
resulting focused structures are then tested against the preconditions, and ac-
tion updates (up,) are applied to those for which the preconditions evaluate
to 1. Any constants representing action arguments are then removed and the
resulting structures are canonically abstracted, leading to the final results.

We formalize the different phases of action application as an action transi-
tion:

Definition 8 (Action Transition) Let a be an action and S; a three-valued
structure with constants representing each of a’s arguments. S; — S5 holds iff
S and Sy are three-valued structures and there exists a focused structure Si €
fr, (S1) s.t. So = canon(up,(S})). The transition S; = S, can be decomposed
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into a set of transition sequences for each result of the focus operation: {(S; fi>
St ey 85 5 $9)|SE € fr,(S1) A SE = up,(Si) A Sy = canon(S3)}.

4.3. Canonical Abstraction as a Representation for Belief States

The abstraction methodology described in the previous sections translates
the generalized planning problem into a contingent planning problem with par-
tially observable states. More precisely, this abstraction results in a state space
with uncertainty about object quantities and properties, such that the only
information about object quantities available to the agent during planning is
whether there exist there exist zero, one, or more than one elements of each
role. These abstract states represent sets of possible concrete states in a man-
ner similar to the modelling approach used in contingent planning, where belief
states (Bonet and Geffner, 2000; Hoffmann and Brafman, 2005) represent sets
of possible real world states which are indistinguishable due to lack of informa-
tion. Existing belief state representations, however, cannot capture uncertainty
in object quantities. Contingent planners use “sensing” actions to determine
properties of belief states. A sensing action results in multiple possible belief
states, corresponding to the different values of the property being sensed.

Focus operations associated with actions described in the previous section
are thus analogous to sensing actions of contingent planning. More precisely,
we can define a sensing action in our framework as an action operator with a
given monadic focus formula representing the property to be sensed. The only
difference between such actions and a regular action operator in our framework
is that the focus formula for a sensing action is specified independently of the
updates that the action may perform.

Example 4 A partially observable version of the delivery domain can be con-
structed by adding uncertainty about the number of crates and locations and
the destination relation. The canonically abstracted structure on the right in
Fig. 4 can be used to represent the belief state of such a formalization. We can
define a sensing action, findDest(c,d), for determining a crate’s destination us-
ing the focus formula dest(c, 1) and update formulas setting a new constant d to
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the crate’s destination. This formulation allows us to solve the sensing version
of the delivery problem, as discussed in Section 7.

In the following sections we use the abstraction and action mechanisms pre-
sented above to develop algorithms for generalized planning.

5. Computing Preconditions of Plans with Simple Loops of Actions

In this section we present our approach for computing preconditions of plans
with simple loops of actions. We define a simple loop in a graph as follows:

Definition 9 (Simple Loop) A simple loop in a graph is a maximal strongly
connected component consisting of exactly one cycle.

We begin by illustrating the idea behind finding preconditions for success of
action sequences on a special class of domains that use only unary predicates.
These ideas are then generalized to abstract domains with binary relations that
satisfy some key requirements (FC® domains, Def. 12). A complete presen-
tation of the method for finding preconditions is provided in Section 5.1. Sec-
tion 5.2 presents a set of necessary conditions under which canonical abstraction
produces FC? domains; the complexity of our algorithms is discussed in Sec-
tion 5.2.1. Finally, Section 5.3 discusses a special class of the domains where
our approach for finding preconditions is applicable; the transport example dis-
cussed below will turn out to be a member of this class.

Consider a simplified transport domain where objects need to be moved from
one location to another by a single truck of capacity one. The vocabulary for
this domain consists of unary predicates {atL1, atL2, inT, object, truck}. The
actions are

e moveTL;(): move the truck to location i,
e loadT(x): load object x into the truck,

e unloadT(): unload object from the truck.

Fig.8 shows a sequence of actions on an abstract initial structure S;. For
the purpose of this example, assume that the goal is to have exactly one object
at L1, as in structure Sg. Note that this sequence of actions creates a loop with
the only occurring branch caused by the choice action. Unlike a loop over a
sequence of concrete states, this loop makes progress towards the goal.

In this case, it is possible to compute the changes in role-counts due to each
action. It can also be proved that every concrete structure represented by the
abstract structures in Fig. 8 will undergo the same changes, as annotated near
the top of the figure (this is not true in general for action application on abstract
states). Further, the condition determining whether or not the branch exiting
the loop is taken can be determined, and depends on a role-count.

Let n denote the initial role-count of {object, atL1} for a concrete structure
embeddable in S;. The role-count change annotations near the top of Fig.8
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Figure 8: A sequence of actions in a unary representation of transport domain. Role-count
changes are shown only for roles involving object, abbreviated as obj.

indicate that n will drop by one in every iteration of the loop. Therefore, we
can determine that the branch exiting the loop will be taken after exactly n —1
iterations. This means that

1. The goal is provably reachable from any of the infinitely many structures
represented by S7.

2. Given a structure s € 57 the number of steps required to reach the goal
following the given loop can be easily determined.

In any domain representation constructed using just unary predicates if ac-
tion arguments are drawn out prior to action application (Section4.2), it is
possible to carry out this method of analysis to determine facts like (1) and (2)
above for a generalized plan with any number of simple loops (this is discussed
formally in Section5.3). In the remainder of this section we provide the details
for a generalization of this technique to a broader class of domains.

The most important properties of the simplified transport domain that made
it possible for us to determine preconditions for the loop of actions in Fig. 8 are:

1. When an action has multiple abstract structures as outcomes, role-counts
in the initial structure determine which branch will be taken.

2. Given an action transition S; ELIN Si Loy S % Sy, the changes in role
counts of every concrete structure represented by S; due to a are the same.
This enables us to precisely represent the changes in role-counts caused
by an action on an abstract structure.
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Note that combining 2 with 1 above, we can easily find preconditions on a
linear sequence of actions leading to a desirable branch by first computing the
branch condition, and then inverting the effect of every action on the role counts
involved in that condition.

In order to extend this idea to domains with binary relations, we will need
some restrictions on these relations in order to make the results of focus opera-
tions categorizable in terms of role counts. Formally, we want certain relations
to be focus-classifiable with respect to a chosen language, i.e, properties ex-
pressed using this language should be sufficient to determine what the result
of a given focus operation will be, on a given abstract structure. In this pa-
per, we use the language Ex consisting of conjunctions of inequalities between
constants and the counts of elements of roles coming from a set of roles R. A
generalization to more expressive languages is left for future work.

Focus classifiability will allow us to categorize branches caused due to the
focus operation in terms of simple inequalities, as in the case of the first action
in Fig. 8.

Definition 10 (Focus Classifiability w.r.t. R) A focus operation fr on a struc-
ture S satisfies focus classifiability w.r.t. R if for every S; € fr(S) it is possible
to compute a constraint [; € Eg such that for every C € v(5), C € ~(S;) iff

CEl.

Given focus classifiability, we need the ability to back-propagate constraints

| € Er through actions in order to express the conditions on an abstract struc-
ture under which an action branch occuring after multiple intermediate actions
will be taken. We achieve this by formalizing property (2) of the simplified
transport domain: we want actions to show constant change w.r.t. the set of
roles R required for focus-classifiability.
Definition 11 (Constant Change) An action transition S ELN gi Pay i <
Sy shows constant change w.r.t. a set of roles R iff there exists a constant J;
for each R; € R such that whenever C; € 7(S}),Cy € v(S3) and C; = Ca, we
have #Rj (02) = #Rj (Cl) + 5]‘.

With constant change and focus classifiability, we can compute preconditions
for linear sequences of actions.

Definition 12 (FC? Domains) Let S be a set of abstract states closed under

transitions for actions from a set A (i.e., if S; € S and S; % --- 5 Sp with
ai,...,a € A, then Sy € S). S is an FC?3 domain? w.r.t. x and A iff for

every S; € S and a € A, the transition Sy f&> Si LPay S8 £ S, shows constant
change and its included focus operation fr, satisfies focus classifiability w.r.t.
R.

2FC3 stands for “focus-classifiability and constant change”
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We omit writing the set of actions A for an FC® domain when it is un-
derstood. We now prove that preconditions for reaching a particular abstract
structure through a linear sequence of actions can be found in FC? domains.
For convenience, we use the notation S||; to denote the refinement of S such

that v(S|);) = {C': C € y(S) A C =1}

Lemma 1 (Precondition for a single action) Suppose Sy fi> St e, S5 S,
is a transition in an FC® domain w.r.t. Er. Then for every ly € Ex there is
an ly € Er such that for all C1 € v(S1), C1 € v(S1lliy) iff upa(C1) € v(Sa|1,)-

PRrROOF Since action fr, satisfies focus classifiability, there is a constraint I;
such that C' € v(S1||;,) iff C € v(Si). We therefore need to compose I; with a
constraint for reaching Si|;, to obtain ;. This can be done by rewriting lo’s
inequalities in terms of counts in S7 since counts don’t change during the focus
operation from S; to Si.

More precisely, suppose #g, (S5) = #r,(S]) + d; (we can write this ex-
pression because a shows constant change). Then we obtain the corresponding
inequalities for Sy by substituting #g,(S1) + ¢; for #Rj(Sé) in all inequalities
of ly. Let us call the resulting set of inequalities I;. Now [} is satisfied by a
C1 € y(S1) iff up,(Cy) satisfies l. The conjunction of I{ and I; thus gives us
the desired constraint /. O

This method can be inductively extended to linear sequences of transitions:

Theorem 1 (Preconditions for a linear sequence of structures and actions) Sup-

. fFr, . upg
pose we have a sequence of actions a1, az,...,a, such that S —— S% —

) [Fa,,  upa, ) . .
S5 Gy 508, iy g Shi1 5 Spi1, in an FC® domain. Then

we can find a constraint liitiar on S1 such that a member C € ~v(S1) reaches
St ligna @long this path of transitions iff C' € ¥(S1limsiar) -

5.1. Preconditions of Paths with Simple Loops

So far we dealt exclusively with finding preconditions over a linear sequence
of actions. In this section we show that in FC? domains we can effectively propa-
gate constraints back through paths consisting of simple (non-nested) loops (see
Def. 9 on page 20), thus finding preconditions over simple loops of actions.

Let us consider the path of transitions from S to Sy including the loop in
Fig.9; analyses of other paths including the loop are similar. Each edge in
the loop represents a transition with its specific focus branch and an action
update. This is explicitly illustrated for action a; in Fig.9. The restriction to
simple loops therefore rules out cases where multiple branches resulting from an
action’s focus operation merge back into the loop. Analysis of such loops with
internal branches is matter for future research.
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Figure 9: Paths with a simple loop. Outlined nodes represent structures and filled nodes
represent actions.

Overview. Returning to Fig. 9, in order to find a constraint on the structure S
which allows us to reach Sy||;,, where [y is a given constraint in £r, we need
to compute expressions for (1) the effect on role-counts after k iterations of the
loop and (2) the conditions on S under which k iterations of the loop can be
executed. The expression for (1) can be computed easily by adding the net
change in role-counts due to each iteration of the loop. For (2), we need to
ensure that in all the k different iterations, whenever an action has multiple
possible branches, the branch that lies in the loop is taken.

Notation. Let the vector R = (#R1,#Ro,...,#R,,) consist of role-counts.
Conceptually, in this vector we can include counts for all the roles; in practice,
we can omit the irrelevant ones. Recall that in FC® domains every action
satisfies constant change and every action branch can be classified in terms of
inequalities between role-counts and constants. Let Rjp, be the branch role for
action a;, i.e., the role whose count determines the branch at action a; (for
simplicity, we assume that each branch is determined by a comparison of only
one role with a constant; our method can be easily extended to situations where
a conjunction of such conditions determines the branch to be followed). We use
subscripts on vectors to denote the corresponding projections, so that the count
of the branch-role at action a; would be Rbi. If there is no branch at action a;,
we let b; = d, an integer larger than m. Let A’ denote the role-count change
vector for action a;. Let Al = Al 4+ A% 4 ... + A%, Let the initial role-count
vector be RO, and the role-count vector after x complete iterations of the loop
be R*.

Methodology. If we can assume that k iterations of the loop are completed
starting with R°, the final role-count vector can be computed by adding the
effect due to each iteration of the loop. In other words, we have R* = R® +
k x A" We now need to compute the conditions under which k complete
iterations of the simple loop will be executed.

In the first iteration of the simple loop, in order to take the branch of action
a; that lies in the loop, we require the role-count R, just before the application
of a; to satisfy an inequality with a constant. More precisely, we require (R° +
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A'G=1), o ¢;, where o is one of {>, =, <} depending on the branch that lies
in the loop and ¢; is a constant.

Because the loop has n actions, the condition for a full execution of the loop
starting with role-count vector R° therefore is:

Rgl o
(RO+ A, o e

(RO +A1“(n71))bn o ¢,

Let us call these inequalities Looplneq(R®), so that Looplneq(X) represents
the condition for executing one complete iteration of the loop, starting with any
m-dimensional role-count vector X. Thus, for executing k complete iterations
of the loop, we require:

Looplneq(R®) A Looplneq(R*~1)

These two conditions ensure all the intermediate loop conditions hold, because
the changes are linear. For an exit during the (k + 1)** iteration, we need the
conditions for k complete iterations, and the conditions for the exit during the
(k + 1) iteration:

Looplneq(R%) A Looplneq(R*™1) (2)
(B)y, o a (3)

(RF+ A, o o (4)

: (5)

(Rk +A1..(i—1))bi o ¢ (6)

[1P%]

where in the last inequality, the “e” corresponds to the condition for the
branch that leaves the loop. These conditions capture exactly the conditions
required for executing k complete and one partial iteration of the loop. This
set of conditions assumes at least one full iteration; conditions for executing
only a partial iteration of the loop can be computed by treating the partial loop
segment as a linear segment of actions. Finally, we can express the role-count
vector at the end of k complete and one partial iteration as:

RI = R* 4 A (7)

Algorithm 1 summarizes this process. Methods ConstrucLoopIneq and Con-
structPartiallneq construct symbolic expressions for Looplneq and the inequali-
ties for the final, partial iteration respectively. Compute CumulativeChange re-
lies upon the ability to automatically compute the change in role-counts caused
due to an action. A precise method for doing so is discussed in the next section,
in Alg. 2.

The following theorem formalizes the result of the process for finding loop
preconditions described above.
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Algorithm 1: findLoopPreconditions

Input: Loop with actions ai, ..., an, desired exit action ay, desired final
role-counts F
Output: Preconditions lo(k) for reaching F' immediately after exiting the loop
during the (k 4+ 1)"" iteration
for i=1ton do
At ¢+ ComputeCumulativeChange(4)
L Ineq; < ComputeRequiredBranchCondition(%)

LoopIneq < ConstructLooplneq(A®',..., A", Ineq,...,Ineq,)
LooplIneqpariiai < ConstructPartiallneq(AY, ... A Ineq,,..., Ineqy)
finalRCEq < “F = R® + k x AV™ + Al+/”

return LoopIneq[R], LoopIneq[R* '], LoopIneqpartial, finalRCEq

N 0O Gk WwN e

fFq ) a .
Theorem 2 (Preconditions of simple loops) Suppose S; ez, S RN Sy 5

fFa . UPg ; . . . .
Sy 508, 5 88— St 5 8y, is a simple loop in an FC3 domain.

Let the loop’s entry and exit structures be S and Sy, such that S 25 8, and
S; 25 Sy

Alg. 1 returns a set of constraints lo(k) such that for any C € S, after k
iterations of the loop and the simple path from S to Sy, the resulting structure

Cy will be in v(S¢lli,) iff C € ¥(Slio())-

Note that the final set of inequalities in the process described above includes
the final values of role counts of all roles (R/), parameterized by the number
of iterations of the loop. Together with the ability to compute changes in role
counts across linear sequences of actions (Thm. 1), Thm. 2 implies that in FC3
domains we can compute whether a path of action transitions which is linear
except for simple loops will take a concrete member of the initial abstract struc-
ture to a desired refinement [ € Ex of the final structure. Further, these results
allow us to compute the exact number of times we need to go around each loop
in order to reach the desired structure with desired role counts.

These results can be extended to the more general setting of a graph of
transitions, all of whose strongly connected components are simple loops. The
precondition for reaching any desired structure from any initial structure can be
computed as a disjunction of the preconditions for every path with simple loops
from the initial structure to the desired structure. In this paper however, we
focus on computing and analyzing plans in the simpler setting discussed above.

Example 5 Returning to the example in Fig.8, let r denote the role-count
of the role {obj, atL1}. We demonstrate the construction of the final set of
equations (2-7) using the initial value r° alone, since this is the only role that
classifies a branch in Fig.8. Considering the left-most choice action as the
first action in the loop, the general expression for ¥ (the value of r after k
complete iterations) is r® — k since the net change in r due to 1 iteration of
the loop is —1 (see the role-count changes listed on top of the figure). Eq.
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(2) therefore amounts to 7 > 1 and r® + (k — 1)(=1) > 1 = 7% > k. For
an exit during the (k + 1)*" iteration, corresponding to Eqn. (7), we require
0+ (k)(=1) = 1 = r% = k + 1 since the loop exit condition requires the role-
count of {obj, atL1} to be 1.

To summarize, for k complete iterations and an exit during the (k + 1)*?
iteration (along the only edge leaving the loop), we get the following conditions:

> =k4+1;0 =0k =1

In this example, rf, the value of r after exit gets constrained to be exactly 1.
The final values of other roles can be calculated simply by adding k = r% — 1
times the change caused due to a single loop iteration.

In order to compute the set of conditions we only need to compute at most n
different A vectors. In our discussion so far, we assumed that these vectors,
together with the constraints determining focus branches can be computed. The
availability and efficiency of these operations ultimately determines the value of
Theorem 2. The next section presents a class of domains where these operations
can be conducted efficiently.

5.2. Sufficient Conditions for Obtaining FC? Domains

We now provide a set of sufficient conditions on abstract states and the
syntax of action operations under which the FC? conditions are satisified. In
domains satisfying these sufficient conditions, constraints determining focus
branches, and role-count change vectors due to actions can be executed in time
linear in the number of elements in the initial abstract structure.

We call a formula ¢ with a single free variable role-specific if it can only hold
for objects of a certain specific role in a given structure. More formally,

Definition 13 (Role-Specific Formulas) A formula ¢ with a single free variable
is role-specific in S iff there exists a role R such that for all C' € v(S) we have
C = Va(p(x) — R(x)), where we use R(x) as an abbreviation for the conjunc-
tion of predicates in R together with literals denoting negations of abstraction
predicates not in R.

The following proposition gives sufficient conditions for focus-classifiability.
We call a formula “uniquely satisfiable” if it can hold for at most one element.

Proposition 1 (Sufficient conditions for focus-classifiability) If ¢ is uniquely
satisfiable in all C € v(S) and role-specific in S then the focus operation f, on
S satisfies focus classifiability w.r.t Ex.

PrOOF Since the focus formula must hold for exactly one element of a certain
role, the only branching possible is due to different numbers of elements satis-
fying the role while not satisfying the focus formula: either there is only one
element of the role, and it satisfies the focus formula, or there is more than one
element of that role and one of them satisfies the focus formula (see Fig. 5 on
page 15). The branch is thus classifiable on the basis of the number of elements
in the role (=1 or > 1). O
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This proof shows that when the premise of Prop. 1 is satisfied, the focus
operation amounts to a comparison between the role-count of a role and the
constant 1. This is the smallest number with which the comparison of a role-
count can be useful; if a role is present in a structure, then we know that it
must represent at least a single element.3

We can immediately extend Proposition 1 to a set of role-specific and uniquely
satisfiable formulas as long as any pair of these formulas either always, or never
coincide:

Corollary 1 If ® is a set of uniquely satisfiable and role-specific formulas for
S such that any pair of formulas in ® is either exclusive or equivalent, then the
focus operation fo on S satisfies focus classifiability.

The condition of unique satisfiability on the focus formulas for actions (the
A* expressions) used in proposition 1 and corollary 1 also gives us actions with
constant change:

Proposition 2 (Sufficient conditions for constant change) Let a be an action
whose predicate update formulas take the form shown in Eq. 1. Action a shows
constant change if for every abstraction predicate p;, all the expressions A;-”', A7
are uniquely satisfiable.

PROOF Suppose S; ELIN Si ey §i S Sy ) € 4(S1) and Oy 2% Cy € 4(S3).

For constant change we need to show that #pg, (Cy) = #g,(C1) + 6 where &
is a constant. Recall that a role is a set of abstraction predicates. Furthermore,
because the set of focus formulas fr, consists of pairs of formulas A} and A} for
every abstraction predicate, and these formulas are at most uniquely satisfiable,
each abstraction predicate changes on at most 2 elements. The focused structure
S% shows exactly which elements undergo change, and the roles that they leave
or will enter.

Therefore, since C is embeddable in S and embeddings are surjective, the
number of elements leaving or entering a role in C; is the number of those
singletons which enter or leave it in Si. Hence, this number is the same for
every Cy € 7(S1), and is a constant determined by S%. a

Since the required conditions in Proposition 2 are subsumed by those in
Corollary 1, Corollary 1 provides sufficient conditions under which a focus oper-
ation on an abstract structure satisfies the FC? conditions of focus classifiability
and constant change.

Therefore, if every abstract structure reachable from a given abstract struc-
ture S;,;: satisfies the conditions of Corollary 1 for every action possible on it,
the space of reachable structures from S;n;; will constitute an FC® domain.

We call domains that satisfy Corollary 1 extended-LL domains because of
their close relationship with linked lists in the abstraction.

3If we relax this notion and allow summary elements to potentially represent 0 elements,
abstract structures become uninformative, stating, for every summary element, the tautology
that there may or may not be an element with that summary element’s role.
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Definition 14 (Ezxtended-LL domains) An extended-LL domain is a domain
schema D with a start structure Sgiq,+ such that all its actions’ focus formulas
F,, are role-specific, exclusive when not equivalent, and uniquely satisfiable in
every structure reachable from a start structure Sgqr¢.

More formally, if Sg1qr —* S and Af are the focus formulas, then Vi, j, Ve, ¢’ €
{4, —} we have A¢ role-specific and either A¢ = Aj/ or A = ﬂAi/ in S.

Note that if actions can be decomposed so that each action operator has
only one focus formula, the restriction of the set of formulas being “exclusive
when not equivalent” in Def. 14 becomes true trivially.

Intuitively, extended-LL domain schemas are those where the information
captured by roles is sufficient to determine whether or not an object of any role
will undergo change due to an action. Examples of such domains are linked
lists, blocks-world scenarios, assembly domains where different objects can be
constructed from constituent objects of different roles, and transport domains.
In terms of computational expressiveness, extended-LL domains form a pow-
erful class: in (Srivastava et al., 2010a), we show that actions in extended-LL
domains are Turing-complete and therefore are sufficient for expressing any
computational process, including any plan with PDDL actions. Note that fini-
tary domains and extended-LL domains are distinct characterizations: finitary
domains have a decidable halting problem and therefore constitute a practical
class of problems. Our results for FC? domains however compute closed-form
preconditions for a certain class of plans and do not make the finitary assump-
tion.

In general, domains can be proved to be extended-LL domains by inductively
proving the properties in Def. 14 for all the structures reachable from a given
start structure. In practice, this can be proved more easily. In the delivery
domain for instance, the only focus operations correspond to choice operations
(which satisfy the extended-LL conditions: the choice formulas are defined to be
unique and role-specific) and the focus operation for crate destinations, which
are also role-specific to the role loc and constrained to be unique.

Theorem 3 (Sufficient conditions for FC? domains: extended-LL domains)
The space of all reachable states in an extended-LL domain constitues an FC?
domain.

5.2.1. Complexity of Finding Preconditions in Extended-LL Domains

Algorithm 2 shows a simple and efficient algorithm for computing the role
changes due to an action on an abstract structure in extended-LL domains.
While computing count, summary elements are counted as singletons. Changes
computed in this way are accurate because in extended-LL domains, only single-
ton elements can change roles. The algorithm conducts O(s) operations, where
s is the number of distinct roles in the two structures.

Conditions classifying branches from a structure S can also be computed
efficiently in extended-LL domains: we know all action branches take place as
a result of the focus operation. The role(s) responsible for the branch will have
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Algorithm 2: ComputeSingleStepChanges

up,

Input: Action transition S; fi) Si 2y 88 5 S,
Output: Role-change vector A

1 R < roles in St or S%
for r € R do

2 countoia(r)= No. of elements with role ¢ in | S|
3 countnew (r)= No. of elements with role r in |S%]
4 A, = countpew (1) — countora(r)

different numbers of elements in the focused structures prior to action update.
Using a straightforward comparison of role counts, the responsible role and its
counts (> 1 or = 1) for different branches can be found in O(s) operations where
s is the number of roles in S.

Using the algorithm for computing one step change vectors A’ (Algorithm 2),
the constraints lo(k) representing preconditions of loops of transitions (Theo-
rem 2) can be computed in O(s - n) time, where s is the maximum number of
roles in a structure in the loop, and n is the number of actions in the loop.

5.8. Classical Unary Domains

We can now see the motivating example shown in Fig. 8 as a special case of
extended-LL domains where all the predicates in the vocabulary are unary. We
define classical unary domains as domain schemas with only unary predicates
whose action updates can be represented using finite, but possibly conditional
add and delete lists of properties.

More precisely, the action updates in classical unary domains are of the form:

w(p(@),a) = —p(@) A NVicrafe = argi} A AT (2) (8)
Vo p(@) A Vit lz = argi} A A ()] (9)

This form of action updates restricts an action’s effects to a finite set of action
arguments. Such restrictions are common in classical planning problem descrip-
tions where all the objects whose properties may be changed as a result of an
action need to be provided as action arguments (hence the qualifier “classical”
in the name for these domains).

Under canonical abstraction, such domains lose almost no information. Since
we always draw-out action arguments prior to action application in the abstract
state space, the update carried out by eqns (9) and (10) always shows constant
change in the abstract state space (the reasons are similar to those in Prop.2).
Action updates in classical unary domains require no focus operations - every
formula evaluates to definite truth values since all the unary predicates are
abstraction predicates. The only branches are caused due to the operations for
drawing out action arguments. These operations use focus formulas constrained
to be role-specific and uniquely satisfiable, and thus satisfy focus-classifiability
(Prop. 1). This leads to the following theorem:
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Theorem 4 (Classical unary domains are extended-LL domains)All classical
unary domains are extended-LL domains, and consequently, FC? domains.

Many interesting problems can be translated into classical unary domains by
creating an instance for every relation of arity k& with all possible values for the
other £ — 1 arguments: in the simplified transport domain introduced earlier in
this section we constructed unary relations atL; corresponding to the different
possible locations. This process is at most as expensive as propositionalizing the
relations, where the resulting vocabulary would have had a constant, (intead of
a unary relation) for every relation and tuple of arity k (instead of tuples of
arity kK —1). Note that although this formulation would be more expensive than
the original representation, it would still be more efficient than the propositional
representation used by classical planners due to the use of canonical abstraction.

The limitation of this approach is that it does not allow generalization in
the numbers of arguments which have been converted into relation instances
(e.g. the locations in the transport example). Extended-LL domains are thus a
strict generalization of classical unary domains, allowing us to represent problem
domains like the delivery problem and blocks-world problems as described in the
section on results.

6. Algorithms for Generalized Planning

In this section we describe algorithms for computing generalized plans us-
ing the representation and methods developed in the preceding sections. The
computed plans will consist of linear sequences of actions separated by simple
loops, allowing a direct application of Theorems 1 and 2 for computing their
preconditions.

6.1. Plan Generalization

We present our approach for computing a generalized plan from a plan that
works for a single problem instance in Algorithm 3. A preliminary version of
this algorithm was described in (Srivastava et al., 2008). The input to Alg. 3 is
a concrete example plan m = (a1, as, ..., a,) for a concrete state Cy. Let Sy be
an abstract structure embedding Cy. In order to be able to find preconditions,
So should be such that the space of structures reachable from it constitutes an
extended-LL domain. In our experience, the canonical abstraction of Cy suffices;
if the space of reachable structures is not extended-LL, loops can still be found,
but their preconditions may not be computable using the methods developed in
Section 5.

The idea behind Alg. 3 is to apply a given concrete plan in the abstract state
space, starting with an abstract start state. This is done through a process
called tracing (line 1). Because of abstraction, recurring properties become
easily identifiable as repeating abstract states. Procedure formLoops uses these
recurring identical structures to identify potential loops (line 2). formLoops
returns a data structure representing all the loop positions and lengths; this

31



Algorithm 3: ARANDA-Learn

Input: 7 = (ay,...,ay): plan for Cy
Output: Generalized plan II
SASequence < Trace(Cp, )
loopSet+ formLoops(SASequence)
IT + createGraph(SASequence, loopSet)
S « last structure in SASequence
if dleé&p: Sf”l ': Pgoal then

It + findPrecon(So, I1, ¢g4)
end
7 return 11, I

S A W N -

is converted in a straightforward manner to a graph representation with nodes
and edges by the subroutine createGraph (line 3).

If there is a constraint on the final abstract structure under which the goal
formula is satisfied, then this is back propagated into a constraint on the initial
structure in II using methods described in Section 5. This is implemented in
the findPrecon subroutine (line 6). Since the methodology for findPrecon has
been discussed extensively in Section 5, we now provide a description of the
subroutines Trace (listed on pg.33) and formLoops (listed on pg. 34).

Procedure Trace takes as input, a concrete plan m and a concrete struc-
ture Cy and returns a trace, or a sequence of abstract structures and actions
(SASequence). In order to do so it first generalizes the choice actions in 7 (line
2). The generalized choice action selecting action a;’s k** argument is speci-
fied using a formula capturing exactly the role of the element o chosen by the
original choice action, in the preceding concrete state, C;_;. The choice action
is constructed as discussed in Section 4.2. The resulting sequence of actions is
successively applied on concrete and abstract states, starting with Cy and its
canonical abstraction, Sy (lines 3,4,5). After each action’s application, the set
of abstract structures obtained is traversed while searching for the one that em-
beds the corresponding concrete result (line 7). Since action updates on abstract
structures capture all possible results, and the results of the focus operation are
mutually inconsistent, exactly one such abstract structure will be found. This
abstract structure becomes the next abstract structure in the trace, and the
one on which next action operator will be applied. Once all actions have been
applied and all the abstract structures capturing the observed concrete results
at each step have been obtained, a sequence of (abstract state, action) tuples is
returned.

The formLoops subroutine converts a sequence of structures and actions into
a path with simple (i.e, non-nested) loops. The restriction to simple loops is
imposed so that we can efficiently find plan-preconditions. More precisely, it
returns a set of tuples consisting of the loopStart, loopEnd and loopExit indices
in the input SASequence (computed by Trace). In each tuple, the segment of
SASequence between loopStart and loopEnd denotes the body of a simple loop

32



Procedure Trace(Cy, m)

So — canon(Cop)
(a1,...,an,) < GeneralizeChoiceActions(m)
for i in[l,...,n/] do
Ci — ai(Ci_l)
AbsStrucSet < a;(S;—1)
for S in AbsStrucSet do

if C; C S then
7 ‘ Si ~— S

end
end

end

8 return SASequence + (Sp, a1), (S1,a2),...(Sn.—1,An,—1), Sn,

S Uk W N -

and the segment of SASequence between loopEnd and loopExit can be rolled
into an iteration of this loop.

formLoops makes a single pass over the input sequence of abstract-state
and instantiated action pairs while maintaining a look-up table, Last, for the
last index where a particular (state, action) pair occurred. If the k" element
of SASequence matches its j** element (j < k), then the index j is taken as
the beginning of a loop (loopStart) and index k as its end (loopEnd). Such a
repeated pair (S;_1,a;) = (Sk—1,ax) indicates that some properties that held
in the concrete state after application of a;_; were true again after application
of ap_1 as witnessed by the fact that S;_; = S;_1, and further, that in the
example plan, the same action a; = a; was applied at this stage. This is our
fundamental cue for identifying a sequence of actions that can be placed in
a loop—as long as an identical abstract state can be reached again, the same
actions can be applied. The subroutine safeLoop returns True iff the loop makes
a net non-zero change for any role-count, determined by adding up all the role-
count changes due to actions in the loop.

The elements between positions loopStart and loopEnd in SASequence con-
stitute a single loop iteration. Once these positions are identified, further it-
erations of the loop are identified (lines 9-13). In order to do so, elements
following SASequence[loopEnd] are matched with the corresponding elements
in the newly identified loop, following SASequence[loopStart]. The mod opera-
tion (line 10) is used to roll back to the beginning of the loop in case multiple
iterations occur after the loop is identified. The index after which elements of
SASequence do not match the elements of the loop is identified as the loop’s
exit (line 12). Finally, the newly identified loop, characterized as (loopStart,
loopEnd, loopExit) is added to the set of loops provided as input. The entire
procedure then recurses on the segment of SASequence after loopExit.

Example 6 Consider the transport problem discussed in section 5. Fig.10
shows a plan execution in the concrete state space. By adding a choice action
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Procedure formLoops (SASequence, loopSet = {})

1

w N

B BT BT

10

11

12

13

14

15

16

/* SASequence=(So, a1), (S1,a2),...(Sn.—1,an.—1), Sn, */
for sa in SASequence do
| Last[sa] « —1
end
loopFound <« False
for sa in SASequence do
if Last[sa] > —1 and safeLoop((Last[sa], indexInSASequence(sa))) then
loopStart +— Last[sa]
loopEnd « indexInSASequence(sa)
loopFound <« True
break /* exit the loop */
end
else
‘ Last[sa] + indexInSASequence(sa)
end
end
if loopFound then
/* Extend the loop by capturing any subsequent iterations */
i < loopEnd; loopLength < loopEnd — loopStart
while SASequence[i] = SASequencefloopStart +
(i-loop End)mod (loop Length)] do
| i+l
end
loopExit <— ¢ — 1
loopSet + loopSet U {(loopStart, loopEnd, loopExit) }
SASequence < segment of SASequence after LoopExit
return formLoops(SASequence, loopSet)

end
return loopSet

{fruck. ot 1} {obj, 091 inT} {fruck, atL1} {obj, a inT} {truck, atl2}
loadT(ol) moveTL2()
ob, oty [fobiatl {oby, atL1} J—
bLZ fobj, atl2} {obj, atl2}
unloadT()
{truck, atL 1} {truck, atL2}
moveTLI()
{obj, atL1} {obj, atL1}
{obj, atL2} {obj, atL2}

Figure 10: An example plan in the transport domain.
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before the first load operation, and tracing out the plan on the canonical ab-
straction of the initial structure we get exactly the path shown in Fig. 8 on
page 21. The included loop can be identified using formLoops, as described
above.

7. Empirical Results

We implemented a prototype for ARANDA-Learn in Python, using TVLA as
an engine for computing action results. We ran this implementation on some
problems discussed in recent work on finding plans with loops. We discuss three
of these problems in detail below; Tables 1, 2 and 3 summarize the results for
the remaining problems which were originally proposed by Bonet et al. (2009).
Further details of these problems, their representations and our solutions can be
found in Appendix A. The class of initial instances for each of these problems
was represented using a three-valued structure. All problems except for the
green block problem in Appendix A constitute extended-LL domains. The green
block problem includes a non-deterministic sensing action for detecting the color
of a block, and demonstrates how our methods work on situations where we do
not have focus-classifiability.

Table 1 shows a comprehensive summary of the preconditions for the gener-
alized plans found for these problems, and the start structures on which they
apply. The [; variables in this table correspond to the number of iterations
of the i*" loop in the generalized plan, where the numbering begins from the
terminal node. Timing results for different phases of plan generalization, and
for precondition evaluation are shown in Table2. Table 3 shows the quality of
the computed generalized plans along the evaluation measures developed in this

paper.

Delivery

We implemented the non-deterministic version of the delivery problem with
a sensing action findDest for one truck. The action and vocabulary for this
problem were defined in Sections 2 and the non-deterministic, sensing aspects
were described in Section 4.3. Because of the restriction to a single truck, the
Mowe and Load actions require only one argument representing the destination
and the crate to be loaded respectively; the Unload action does not require argu-
ments, and the predicate in becomes unary and holds for the object currently
in the truck. The input example plan delivered five objects to two different
locations. The abstract start structure is shown in Fig.11. ARANDA-Learn
found the generalized plan shown in Fig.12. Since the delivery domain is an
extended-LL domain, we can use the methods described in Section 5 to com-
pute the preconditions for this plan as #(item) > 3. In fact, here and in all the
following examples the preconditions also show how many loop iterations there
will be in a plan execution (e.g. #(crate) =1+ 3, where [ > 0 is the number of
loop iterations).
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Problem Start Structure ‘ Preconditions on Start Structure

Delivery Fig. 11 #{item} = 3 4+ l1; #{loc} > 1

Trucks Fig. 14 #{monitor, atL2} = 2 + l1; #{server, atL1} =2+ 1;
#{ Blue, misplaced} = 2 + 13

Blocks Fig. 15 #{ Red, misplaced} = 3+ lo
#{ Red, misplaced, onTable, topmost} = —1+ 11 — l2
#{ Blue, misplaced, onTable, topmost} =11 — I3

Green Block Fig. A.17 #}=2+0h

Hall-A Fig. A.18 #{wborder} = 4 4 l1; #{nborder} =4+l
#{eborder} = 4 + l3; #{sborder} =4+ 14

Prize-A(5 rows) Fig. A.19 h=ly =13 =ls = ls; #{dFromE} = 3 + lg
#{dFromW} =I5 — lg; #{dFromN} = 5

Prize-A(7 rows) Fig. A.19 h=ly=ls=ls=1l5=ls = lr;3#{dFromB} =3 + I
#{dFromW} = Iy — lg; #{dFromN} =7

Corner-A Fig. A.20 #{dFromN} = 2 4 l1; #{dFromE} = 3+l

Table 1: Preconditions for example problems. [; denote the number of iterations of loop i
in the corresponding plan; preconditions for the Green Block problem are necessary, but not

sufficient.
Problem Tracing Loop Finding Computing Preconditions Total
Delivery 66.12 3.93 0.01 70.05
Trucks 85.79 2.94 0.01 88.74
Blocks 65.01 2.04 0.02 67.06
Green Block 17.04 0.52 0.00 17.56
Hall-A 32.30 1.89 0.01 34.19
Prize-A(5 rows) 35.73 0.51 0.01 36.24
Prize-A(7 rows) | 47.93 0.79 0.02 48.73
Corner-A 6.94 0.04 0.00 6.98

Table 2: Timing results for ARANDA-Learn. All results in seconds; runs were carried out on a
Linux machine with an Intel Core2 Duo 1.6GHz processor and 1.5GB RAM.
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Problem Domain Coverage Applicability Test Instantiation Cost Quality

Delivery > 3 items O(n) O(n) 1
Trucks > 2 pairs O(n) O(n) 19% =0.81
Blocks > 4 pairs O(n) O(n) 1
Green Block > 4 blocks O(n) O(n) 1
Hall-A > 6 segments/wing O(n) O(n) 1
Prize-A (5) 5% (341) grids O(n) O(n) 1
Prize-A (7) 7% (3+1) grids O(n) O(n) 1
Corner-A (2+1) x (34 k) grids O(n) O(n) 1

Table 3: Evaluation of some generalized plans. n denotes the size of the problem instance and
I, k are variables > 0. See Sec. 7.2 for discussion of quality of the Trucks solution.

Figure 11: Abstract start structure for the Delivery problem

Trucks
Vocabulary: {Monitor, Server, T1, T2, atL1, atL2, inT1, inT2}
Actions: {LoadT;(z), UnloadT;(), GoToL; T;()}
This is a problem from the transport domain. We have two source locations
L1 and L2, which have a variable number of monitors and servers respectively
(Fig. 14). There are two trucks, T'1 at L1 and T2 at L2 with capacities 1 and 2
respectively. The generalized planning problem is to deliver all—regardless of
the actual numbers—items to L4, but only in pairs with one item of each kind.
We represented this domain without using any binary relations, as a classical
unary domain. Fig.14 shows initial abstract structure used for tracing. The
example plan for six pairs of such items worked as follows: T'1 moved a monitor
from L1 to L3 and returned to L1; T2 then took a server from L2 to L4,
picking up the monitor left by T1 at L3 on the way. Fig. 13 shows the main
loop discovered by our algorithm. The computed preconditions for the final
generalized plan are shown in Table 1, and constrain the counts of servers and
monitors to be equal, and at least 2.
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choose d: d=dock
Move(d)

choose c: item(c)
#item} > 1

I
I
(choose c: item(c) & inT(c) ) :
d = findDest(c) MVI2L30
#{loc} > 1 L
choose I: I=d

(ohoose c: monitor(c) & atL1(c)
Unload()

choose d: d=dock

Move(d)
choose c: item(c)

#{item} > 1

(choose c: item(c) & inT(c) ) @hoose c: server(c) & QTLQ(CD

i#{server, afl2} > 1
d = findDest(c)

#loc} > 1

choose I: I=d

LoadT1(c)
UnloadT10

=1

#{monitor, atL1}

#monitor, atL1} > 1

(choose c: server(c) & cTL2(cD

#{server, atl2} = 1

Cchoose c: monitor(c) & ofLS(c))

LoadT2(c)

mvT2L40

LoadT2(c)

i

Move(l)

(ohoose c: monitor(c) & 0TL3(C))
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Figure 13: Main loop for Trucks

Figure 12: Generalized plan for unit delivery problem
instances with at least 2 crates.
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Figure 14: Map and the start structure for Trucks
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Figure 15: Start structure for striped block tower

Striped Block Tower
Vocabulary: {Redl7 Blue', base', onTable*, on?, topmostt, on*?, misplacedl}
Actions: {Move(x,y), moveToTable(x)}

Given a tower of red and blue blocks with red blocks at the bottom and blue
blocks on top, the goal is to find a plan that can construct a tower of alternating
red and blue blocks, with a red “base” block at the bottom and a blue block
on top. We used transitive closure of the “on” relation, on*, to express stacked
towers and the goal condition.

Fig. 15 shows the abstract initial structure. The misplaced predicate is used
to determine if the goal is reached. misplaced holds for a block iff either it is on
a block of the same color, or above a block which is on a block of its own color.

The input example plan worked for six pairs of blocks, by first unstack-
ing the whole tower, and then placing blocks of alternating colors back above
the base block. Our algorithm discovered three loops: unstack red, unstack
blue, stack blue and red (Fig.16). The preconditions shown in Tablel de-
scribe possible role-counts at the start structure. These conditions capture
a more general situation where the start structure may have some blocks on
the table, corresponding to the roles {Red, misplaced, onTable, topmost} and
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{ Blue, misplaced, onTable, topmost}. If we set these quantities as zeros, we get
l1 = I3 and l; = I3 + 1, which constrain the number of red and blue blocks in
the initial stack should be equal. Further, the number of blue blocks should be
3+ 13+ 1, counting the blocks with roles { Blue, misplaced} and one extra block
with the role { Blue, misplaced, topmost}.

7.1. Summary of Timing Results

Timing results for all the test problems are shown in Table 2. Although the
entire process of tracing can be understood as contributing to the information
utilized for computing preconditions, once the role-count changes due to action
operations have been computed, the time required for computing preconditions
for the obtained generalized plan is negligible.

Many optimizations are possible on our protoype implementation of the
presented algorithms. Our implementation is written in Python, which is an
interpreted language. Faster results can be obtained from an implementation
in a compiled language. Profiler outputs show that most of the time is spent
in calls to TVLA and in python’s module for adding or removing edges from
graphs that we use to implement first-order structures. Optimization of these
data structures can also improve the run times.

7.2. Evaluation of the Obtained Plans

Table 3 shows an evaluation of the generalized plans found by ARANDA-
Learn, and described in the previous section. Testing for applicability requires
only counts of elements of different roles in the start structure. Table 3 lists this
cost as O(n) but it can be reduced to a constant number of numeric comparison
operations if these counts are provided with the initial concrete state.

Plan instantiation cost is always O(n) because we find plans with simple
loops, all of which reduce the count of some role(s) and thus can be iterated at
most O(n) times. Each iteration has a constant number of choice operations,
and each of these can be executed in constant time by maintaining look-up
tables containing elements of each role, as a part of the action updates.

We use the ratio of the length of an instantiation for a problem instance
of size n with the length of the optimal plan for that size as a measure of the
quality of the generalized plan. All the obtained plans except for Trucks execute
a minimal number of operations and are optimal. Plan quality for Trucks is less
than 1 because our plan uses both vehicles; the fewest actions are used if only
the Truck is used for all transportation, in which case a problem instance with
p pairs of deliverables is solved in 9p actions. On the other hand, the obtained
plan has a better makespan.

For all the test problems, the computed generalized plans solve all problem
instances above a certain lower limit on the size; the asymptotic domain coverage
of all the generalized plans is maximal (one). Typically, the unsolved instances
are small and have at most four elements per summary element in the initial
abstract structure. While these instances could easily be solved using classical
planners, we present more general methods for extending the applicability of
partial generalized plans in (Srivastava et al., 2010Db).
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Figure 16: Generalized Plan for Striped Block Tower. In choice actions, only the predicates
belonging to the role being chosen are shown.
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7.8. Observations and Key Features of the Results

The empirical results presented above and in Appendix A share some key
features which can inform the choice of input example plans for ARANDA-Learn
and also provide opportunity for subsequent extensions of these plans. We
discuss these features below.

Length of Input Plans. Our approach for identifying useful loops in example
plans rests on being able to find recurring abstract structures which represent
invariants of the loop’s execution (e.g., Fig. 8 on page 21).

In order to express a loop’s invariant (and consequently, to identify the loop)
in terms of an abstract structure, all the roles which gain or lose elements due to
an iteration of that loop must be summary elements in the abstract structure.
If this is not the case, and we have an initial abstract structure with a singleton
element for a role R; being affected by an iteration of the loop, an application of
the loop will result in a different abstract structure in which role Ry will either
be represented by a summary element or will be entirely absent.

As long as any sequence of actions leads to such an invariant state, our
approach can identify a subsequent sequence of actions which returns to this
invariant state as a potential loop. In most of our examples, this can be achieved
if the concrete instance solved by the example plan has at least 5 elements for
every summary element of the initial abstract structure. With this number it
is possible to reach, and subsequently revisit an invariant state: the first two
transfers of elements lead to the first occurrence of an invariant state with two
elements each in the roles which gain or lose elements; the next sequence of
operations which cumulatively makes a similar transfer will reach the abstract
invariant state again, leading to the identification of a potential loop.

In the initial abstract structure for the delivery problem for instance (see
Fig. 11 on page 37), we need at least five different elements with role {item};
the role-count of {loc} is never changed (no action changes the properties of
location elements) so that any number of locations greater than 1 (to necessitate
a summary element) suffices. A more efficient approach for future work could be
to trace the example plan on an abstract structure which already has summary
elements for all the affected roles and is thus closer to the invariant state.

Computed Generalized Plans. The output generalized plans shown in Figs. 13
and 16 include some “unrolled” iterations of each loop. These iterations were
not merged into the loop because the abstract structures in these segments could
not be embedded into the abstract structures within the loop—recall that these
structures are computed during tracing and represent the set of concrete states
possible at any step in the generalized plan.

This representation has the drawback that the unrolled iterations make out-
puts longer and harder for users to understand. The output plans could be
made more readable while also retaining correctness and the ability to compute
preconditions, through post-processing steps: once the role-count changes have
been computed, abstract structures can be discarded and every loop’s preceeding
and succeeding actions can be merged with the loop whenever the role-count
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changes of those actions match with the actions within the loop. However,
we do not currently perform these operation as they sacrifice the potential for
automatically extending the computed generalized plans using their abstract
structures (Srivastava et al., 2010b). Development of methods for improving
output quality without losing this capability is left for future work.

8. Related Work

There have been very few directed efforts towards developing generalized
plans with the capabilities we demonstrate. Repeated effort for solving similar
problems was identified as a serious hurdle to a practical application of planning
almost as soon as the first modern planners were developed (Fikes et al., 1972).
Various planning paradigms have since been developed to handle this problem
by extracting useful information from existing plans. However, to our knowledge
no approach addresses all the challenges in generalized planning described in the
introduction. In this section we discuss other work on finding plans that could
be understood as generalized plans. We also discuss related uses of abstraction,
both in planning and software model checking.

Abstraction in Planning. Our approach uses abstraction for state aggregation,
which has been extensively studied for efficiently representing universal plans
(Cimatti et al., 1998), solving MDPs (Hoey et al., 1999; Feng and Hansen, 2002),
for producing heuristics and for hierarchical search (Knoblock, 1991). Unlike
these techniques that only aggregate states within a single problem instance, we
use an abstraction that aggregates states from different problem instances with
different numbers of objects.

Hoffmann et al. (2006) study the use of abstraction for STRIPS-style classical
planning. They prove that for a wide class of abstractions motivated by those
used for evaluating heuristics in planning, searching over the abstract state space
cannot perform better than informed plan search (using heuristics or resolution
based search). We use abstraction to solve a different problem, that of observing
the effect of a plan on a set of distinct problem instances with varying numbers
of objects; further, our abstraction is not propositional and does not satisfy
some of their planning graph based requirements.

Ezxplanation Based Learning. In explanation based learning (EBL) (Dejong and
Mooney, 1986), a proof or an explanation of a solution is generalized to be
applicable to different problem instances. A domain theory is used to gener-
ate the required proof for a working solution. The BAGGER2 system (Shavlik,
1990) extended this paradigm by generalizing the structure of the proofs them-
selves. Given a hand-coded domain theory including the appropriate looping
constructs, it could identify their iterations in proofs of working plan instances,
and subsequently generalize them to produce plans with recursive or looping
structures. However, the BAGGER2 system does not address the problem of
proving termination for its output plans.
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Plans With Loops. Two recently proposed approaches to finding plans with
loops share many of the objectives of the approach presented in this paper.
KPLANNER (Levesque, 2005) proceeds by iteratively finding plans for small prob-
lem instances and identifying recurring patterns which can be placed into loops.
However, KPLANNER only identifies loops that generalize a single numeric plan-
ning parameter. Levesque notes that “even short iterative programs can be
quite difficult to reason about”. He concludes that “faced with an intractable
reasoning problem, we can look for compromises. ... [and] forego the strong
guarantees of correctness”. In contrast with other existing approaches, KPLAN-
NER addresses the problem of developing applicability tests by guaranteeing
that the computed plans work across a user-supplied interval of values for the
planning parameter.

DisTILL (Winner and Veloso, 2003, 2007) is a system for learning domain
specific planners (dsPlanners) through examples. DISTILL uses partially ordered
example plans with annotations reflecting every operator’s needs and effects.
These annotation are used to compile parametrized versions of example plans
into a dsPlanner, which consists of a sequence of statements like if...then...else
and while(){..}. At any stage during execution, the conditions of multiple such
statements may be true; the execution model of dsPlanners is to always execute
the first such statement in the dsPlanner. While DISTILL ensures that if a
loop’s condition is true then one iteration of the loop will be executable, it does
not guarantee goal reachability, or address the problem of developing efficient
applicability tests: the applicability test for a dsPlanner requires a simulated
execution until none of the steps in the plan can be applied.

Approaches for strong cyclic planning (Cimatti et al., 2003) aim to gener-
ate plans with loops for achieving temporally extended goals and for handling
actions which may fail. Although strong cyclic plans include loops, their objec-
tives and motivations differ significantly different from those of the presented
work. The utility of loops in strong cyclic plans lies in being able to repeatedly
return to a previous state, from where a sequence of actions with a chance of
success can be re-applied; plans with loops are only found if no acyclic plan can
solve the given problem.

In contrast, our objective is to construct loops whose iterations make mea-
surable, incremental changes leading to a goal. Execution of these loops never
revisits a concrete state. In fact, linear plans exist for all the problem instances
we consider, but are less desirable than plans with loops due to their much
smaller domain coverage.

Programming By Demonstration. The objective of learning loops by generaliz-
ing concrete plans is similar to the objectives of programming by demonstration
(PBD). In practice, approaches for PBD follow very different assumptions com-
pared to those in the field of AI Planning. Approaches like (Lau et al., 2003)
address the significantly different problem of using a given segment of a user’s
actions (e.g. keystrokes in a text editing task) to predict the remainder of the
program being executed. In this approach, loop iterations in training examples
are explicitly annotated by the user. The SHEEPDOG (Lau et al., 2004) system
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on the other hand uses an extension of Hidden Markov Models to predict the
next most likely action required during a technical support task. Instead of
computing the preconditions for their learned structures, both of these systems
provide probabilistic quality and usability guarantees. Such guarantees can be
useful in many settings, particularly those where a limited domain theory pre-
vents precondition analysis. The PLOW system (Allen et al., 2007) also captures
loops via demonstration, but uses a mixed-initiative approach where the user
provides cues to the system for beginning a loop recognition process, proactively
corrects the system’s errors while demonstrating a solution and provides explicit
loop termination conditions.

A related area of research is workflow inference, where actions are replaced
by functions whose inputs and outputs are data-collections. Approaches for
workflow inference like LAPDOG (Eker et al., 2009) and WIT (Yaman and
Oates, 2007) learn loops of actions from example traces but fundamentally differ
from planning in the notion of actions: in effect, action outcomes of workflow
actions, which amount to data or information, are never “deleted”. This implies
that an observed sequence of actions can always be repeated. This allows WIT
to work without any information about action preconditions and effects: action
occurrences in an observed trace can be treated like alphabets in a problem
of grammar induction. In planning however, actions regularly remove facts
on which successive actions, or loop iterations may depend. Our approach
represents summarized information about the states possible after an action
application using abstract states. This information captures action effects and
allows us to determine when (and how many times) a loop of actions may be
executed.

Policies and Plans. Fern et al. (2006) present an approach for developing gen-
eral policies which can be used over a wide variety of problem instances. Their
approach however does not aim to produce algorithm-like plans and requires
intensive initial training. Their policies also do not come with applicability
tests.

Contingent Planning. Contingent planning (Bonet and Geffner, 2000; Hoffmann
and Brafman, 2005) can be seen as an instance of generalized planning where the
class of initial instances represents the set of possible initial states. Contingent
planners already use state abstraction to represent sets of possible states (world
states) as belief states. Sensing actions serve to divide a belief state in terms of
the truth value of the proposition(s) being sensed.

However, existing contingent planners expect a finite set of initial states
and cannot model belief states with unknown quantities of objects. Existing
representations of contingent plans are also limited, leading to tree-structured
solutions exponential in the number of objects. As discussed in the introduc-
tion, this tends to increase the computational complexity of finding the desired
contingent plan.

Software Model Checking. Software model checking is the problem of verifying
that the behavior of a formal specification or program satisfies desirable proper-
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ties. In general, such properties may range over segments of execution. Software
model checking literature consists of a wealth of different abstraction techniques
for effectively capturing state properties and soundly updating states as a result
of program steps. More recent approaches employ automated abstraction refine-
ment to increase the precision of abstraction in the branch of execution where
a possible counterexample to correctness is found (Henzinger et al., 2002).
Methods such as Terminator (Cook et al., 2006) use linear inequalities to rep-
resent changes caused due to loop iterations. For a class of programs with while
loops, Terminator is guaranteed to find a measure of progress, if one exists in the
form of a linear ranking function. The measure of progress proves that the loop
will eventually terminate; such methods can be used to provide weaker guar-
antees of correctness in our framework such as the absence of non-terminating
loops. Terminator’s use of linear inequalities for representing changes caused by
program statements are also suitable for representing the changes in role counts.

9. Conclusion

Contributions. In this paper, we presented a formal notion of generalized plan-
ning with a set of fundamental measures for evaluating generalized plans along
different dimensions of utility. We introduced tools and techniques motivated
by software model checking for addressing the problem of finding provably cor-
rect generalized plans. We used an abstraction method from the TVLA system
to develop a sound approach for the construction of generalized plans with
loops using example classical plans. The resulting framework allows us to (a)
compactly represent sets of states with unknown, and unbounded quantities of
objects, (b) recognize recurring state properties in the search for segments of
classical plans which could potentially be useful as loops of actions, and, (c) effi-
ciently compute plan preconditions for use as efficient applicability tests. From
a broader perspective, although the general problem of determining when a loop
of actions will even terminate is undecidable, we presented a novel approach for
computing the conditions under which a class of plans with loops will not only
terminate, but also lead to a desired goal state.

In conclusion, perhaps the most significant property of the presented ap-
proach is that it offers an efficient method for computing plans with simple
loops as well as characterizing their applicability on unbounded classes of prob-
lem instances.

Limitations and Future Work. The presented approach is based on abstraction
in terms of unary predicates. In some situations, a domain’s unary predicates
may not capture all the properties necessary for determining the progress made
by loops. This problem involves a trade-off between decreasing the granularity of
abstraction for increased precision in inference on the one hand, and maintaining
a tractable reasoning process on the other. This is a broad and well-studied
problem in the model checking literature, with two categories of approaches:
(1) the addition of new defined, or instrumentation predicates whose update
formulas can be computed automatically (Reps et al., 2003), and (2) dynamically
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refining the abstraction by adding new predicates as needed (Henzinger et al.,
2002). Both of these approaches could be applied in the context of identifying
loops that make measurable progress in our approach.

At present, our approach is sensitive to the initial concrete instance on which
the example plan is applied. As discussed in Section 7.3, modifying the initial
concrete and abstract structures used for tracing could allow us to find plans
that are more compact, and also more general. Another direction for future work
could be a more streamlined representation of the computed plans, which could
make the plans intuitively more easy to understand. The presented algorithm
for identifying loops works in a greedy fashion by always accepting the first
terminating loop that it finds. A more exhaustive search could be conducted
for maximizing a specific measure of plan quality, such as domain coverage.

The presented approach constructs generalizations of single examples. In
related, ongoing work, we have made some initial progress in generalizing and
merging useful segments from multiple classical plans (Srivastava et al., 2010b)
into a coherent generalized plan. This process uses abstract structures stored in
our generalized plans to identify situations where segments of additional classical
plans could be applicable. In practice, this approach can also be used to extend
the coverage of plans computed in this paper, to include all the small problem
instances that are currently not covered.

The focus of algorithms in this paper was on methods for finding general-
izations of classical plans. However, the approach for finding preconditions of
plans with simple loops of actions can also be used to conduct a direct search
for generalized plans. This can be done by searching for paths to goal states like
classical planners, with two exceptions: first, the search would be conducted in
an abstract state space using the abstract action application described in this
paper; second, the search would also include paths with cycles that can be de-
termined to make progress. Once a path to the goal is found, its preconditions
can be computed. Search for more paths to the goal would continue until a de-
sired coverage is reached. This algorithm could be implemented in an anytime
fashion, with solution quality improving over time in terms of domain coverage.
The smaller size of abstract state spaces in comparison to concrete state spaces
for large numbers of objects makes this approach viable. In practice, the search
process can be guided with heuristic functions for efficiency.

Efficient representations of preconditions of nested loops and the extension
of our methods to wider classes of domains are also natural directions for fu-
ture research on the more fundamental questions addressed in this paper. For
the latter, the combination of features of unary and extended-LL domains is a
promising next step. This direction of research can also benefit from methods
used in generation of ranking functions for loops (Podelski and Rybalchenko,
2004).
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Appendix A. Detailed Empirical Results

Note on Problem Domains. The Hall-A, Corner-A, Prize-A and GreenBlock
problems were first discussed by Bonet et al. (2009), under a framework for
partial observability where observations are automatically triggered when the
real states generating them are reached. This formulation thus does not require
sensing actions. Although this is a very different formulation from ours, the
problems remain meaningful and interesting in our setting as well. In most
cases, the abstraction we used to represent the multiple possible initial states
corresponded with the belief states used by Bonet et al. to reflect partial ob-
servability. In general, their solutions are much more compact than ours - this
is expected, as we restrict our implementation to find only simple loops.

We restrict our evaluation to the focus of this paper, which is on plan gen-
eralization and precondition computation; a more detailed evaluation of the
capabilities of our approach for conditional planning using sensing actions is
beyond the scope of this paper.

Green Block
Vocabulary: {topmost', onTable', on?, onx?,isGreen®}
Actions: {unstack(), senseColor(zx), collect(), discard()}

The Green Block problem is to find a green block in a stack of blocks. We
formulate this problem using a sensing action to determine the color of the
topmost block (cf. note on problems above). Fig. A.17 shows the abstract
initial structure. We use the isGreen(arg,z) predicate in order to implement the
sensing action for block z’s color using the focus operation.

The unstack action places the topmost block into the gripper; the senseColor
action senses the color of the topmost block; the collect action collects the block
in the gripper and the discard action discards it. The color of a block is visible
only while the object is on the stack, and is obscured when the block is in the
gripper.

This problem domain does not belong to the extended-LL class because
its goal depends on a sensing action whose result cannot be predicted based
on role-counts alone. However, ARANDA-Learn still computes a determininstic
generalized plan that can be proved to work for all but the smallest instances
(with fewer than 4 blocks, see Table 1 on page 36) of the green block problem.

The smallest example plan in which a loop could be recognized found a
green block and collected it after discarding 3 non-green blocks. The computed
generalized plan recognizes the loop with an exit when the topmost block’s color
is sensed to be green.

The learned generalized plan is thus correct and deterministic, but its pre-
conditions are not expressible in terms of the counts of available roles. Because
of this, the preconditions we obtain are necessary, but not sufficient.

2

Hall-A
Vocabulary: {e?, n?, e**, n*2, whorder', nborder', eborder', nborder!, visitedl}
Actions: {mvE(), mvW(), muN(), mvS()}

*2
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Figure A.17: Initial abstract structure for the green block problem.

The problem domain consists of 4 hallways arranged to form a quadrilateral.
Each hallway is segmented into multiple segments denoting room boundaries
which have to be traversed to cross the hallway (see Fig. A.18, left); the problem
is to find a plan for visiting all four corners and returning to the starting point,
for an agent starting at a given corner.

The e and n relations represent the east and north relations between hall
segments and the e* and n* relations, their corresponding transtive closures.
The wvisited relation is used to determine the goal condition and x — border
predicates define different hallways. The smallest example plan from which our
approach could identify loops solved this problem for a square arrangement with
7 segments in each hall. The canonical abstraction of this initial state, used as
the initial abstract structure during tracing, is shown in Fig. A.18.

The computed generalized plan consists of four loops, and its preconditions
(Table 1 on page 36) show that it can solve any quadrilateral (as opposed to
rectangular) arrangement of halls with at least 6 segments in each hallway.

Bonet et al. (2009) formulate this problem with an initial belief state of a
fixed size. The controller learned by their approach can be seen to work for halls
of any dimensions with the agent starting at any of the hallway segments, but
this fact is not discovered automatically. In our approach, the initial belief state
itself generalizes the problem to quadrilaterals with sides of arbitrary lengths.
The amount of information revealed by abstract states in our formulation is close
to the information revealed by Bonet et al.’s partially observable formulation:
the agent knows only which hallway it is in, and whether or not it is at, or next
to, a corner.
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Figure A.18: The quadrilateral hallway and its abstract representation for the Hall-A problem.

Representing Grid-world Problems

In all of the following problems we model grids by representing the agent’s
location in the grid using distances from all the four borders. These distances
are represented as role-counts of the four single-predicate roles created by the
abstraction predicates {dFromFE, dFromW, dFromN, dFromS}. Each of the four
mvX () actions for moving along the cardinal directions adds and subtracts an
element from the corresponding pair of roles. As with the formulation of Hall-A
above, the amount of information revealed by the abstract states closely matches
that of the belief states used by Bonet et al.

The vocabulary and actions for each of the following problems therefore, are:
Vocabulary: {dFromE, dFromW, dFromN, dFromS}

Actions: {mvE(), mvW(), muN(), mvS()}
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Figure A.19: Initial abstract structure for the Prize-A problem.

Prize-A

In Prize-A, the agent must completely traverse all the squares of a given
rectangular grid, starting at a given corner. The abstract start structure is
shown in Fig. A.19.

For this problem, Bonet et al. obtain a single-state controller for a 4 x 4 grid
which can actually work for all grids composed of 4 columns of squares. Their
implementation could not solve problems with more rows.

Utilizing example plans that traversed the grid row-wise, our approach easily
scales to grids with higher numbers of rows. We present timing results with 5
and 7 row grids in Table2. Note that a complete general solution to a grid
with n rows is quadratic in n, and consequently cannot be learned from such
example plans because of our restriction to generalized plans with simple loops.
The obtained generalized plans have a different simple loop for each row in the
grid.

The preconditions constrain the number of iterations of all but the last loop
to be equal; as in the blocks problem, they are more general than the initial
abstract structure in Fig. A.19 and allow the starting location to be at a distance
from the West corner. Consequently, the number of iterations of every loop other
than the first eastward traversal are constrained to be equal, restricting the plan
to rectangular grids. Further, if #{dFromW} is set to zero, denoting a start
at the southwest corner, the number of iterations of the first loop (Is) also get
constrained to be equal to the others.

Corner-A

In the Corner-A problem, the agent must reach the top right corner of the
grid. The start structure for this problem is shown in Fig. A.20.

We used an example plan that moved the agent to the right and then up
along the right boundary. The learned generalized plan consists of a loop of
muE() actions followed by a loop of muN() actions. Preconditions show that
the plan works for any grid at least 3 squares wide and 2 squares high.
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Figure A.20: Initial abstract structure for the corner problem.
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