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Abstract 

A problem of rearranging a group of robots that are moving 
in a certain environment is addressed in this paper (multi-
robot path planning). A case when a graph modeling the en-
vironment is bi-connected is particularly studied. The paper 
puts into a relation the well known problems of moving 
pebbles on graphs (sliding box puzzles) with problems of 
multi-robot path planning. Theoretical results gained for 
problems of pebble motion on graphs are utilized for the de-
velopment of algorithms for multi-robot path planning. As 
the optimization variant of both problems (a shortest solu-
tion is required) is known to be computationally hard (�P-
hard), we concentrate on construction of sub-optimal solv-
ing procedures. However, the quality of solution is still an 
objective. A process of a composition of a sub-optimal solu-
tion of the problem of multi-robot path planning (a plan) of 
the pre-calculated optimal plans for the sub-problems (ma-
cros) is suggested. The plan composition using macros was 
integrated into two existing sub-optimal solving algorithms. 
In both cases, substantial improvements of the quality of re-
sulting plans were achieved in comparison to the original 
versions. The no less important result is that one of the ex-
isting algorithms was generalized by integrating macros for 
a larger class of problems of multi-robot path planning. 

Introduction and Motivation    

Consider a group of robots moving in a certain environ-
ment where each robot needs to reach a certain goal posi-
tion. The condition that must be preserved during robot 
motion is that robots must avoid obstacles and they must 
not collide with each other. This problem ranks among the 
most challenging problems of artificial intelligence and it 
motivates efforts of theorists as well as practicians (Russell 
& Norvig, 2003). The main difficulty of the problem arises 
from the requirement on the optimality of solutions and 
from complex interactions among robots. 

The primary motivations for the problem are tasks of 
moving objects in tight space. These tasks include rear-
ranging containers in storage yards, coordination of 
movements of a large group of automated agents, or opti-
mization of dense traffic. However, this is not the only 
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motivation. Many tasks from virtual spaces can be also 
viewed as problems of path planning for multiple robots. 
An example may be data transfer with limited buffers at 
communication nodes, a coordination of a group of agents 
in strategic computer games, or planning movements in 
mass scenes in computer-generated imagery. The impor-
tant feature we need to preserve in solving techniques for 
the problem is that the group of robots should be treated as 
a single entity – intuitively, keeping this in mind allow to 
produce solutions of higher quality. 

We observed a similarity between the formal definition 
of the problem of multi-robot path planning as it is dis-
cussed in (Ryan, 2007) and the problem of pebble motion 
on a graph (Kornhauser et al., 1984). As there is lot of 
theoretical results for pebble motion on graphs we tried to 
utilize these results in our algorithms. 
 Both studied problems are computationally difficult 
when the shortest possible solution is required (�P-hard) 
(Ratner & Warmuth, 1986). Therefore we concentrate on 
developing of sub-optimal methods. An approach de-
scribed in this paper is based on the use of pre-calculated 
optimal solutions to sub-problems (macros). We success-
fully tried to integrate macros within two existing sub-
optimal algorithms. The resulting solving process proved 
to be better in terms of length of solutions (shorter solu-
tions are preferred) as well as in terms of runtime. 
 The main contributions of this paper consist in the fol-
lowing aspects: (i) the problem of multi-robot path plan-
ning and the problem of pebble motion on a graph are put 
into relation, (ii) two existing algorithms are improved by 
integration of macro utilization – one of the described 
algorithms is now one of the best algorithms for certain 
class of problems, and (iii) this algorithm was also ex-
tended so it is now applicable to more general class of 
problems. 

Pebble Motion and Multi-robot Path Planning 

Consider an environment with a group of mobile robots. 
The problem being addressed in this paper consists in find-
ing paths for the group of robots that need to reach certain 
goal positions starting from the given initial positions. The 
robots must not collide with each other and they must 



avoid obstacles in the environment. 
 A relatively strong abstraction is adopted in this paper. 
The environment where the robots are moving is modeled 
as an undirected graph. The vertices of the graph represent 
positions in the environment and the edges model an un-
blocked way from one vertex to another. The time is dis-
crete in this abstraction; it is an infinite linearly ordered set 
isomorphic to {0,1,2, }…  where each element is called a 
time step. 

Formal Definitions of the Problems 

The following two definitions formalizes a problem of 
pebble motion on a graph (also called a pebble motion 
puzzle or sliding box puzzle) (Wilson, 1974; Kornhauser et 
al., 1984) and the related problem of path planning for 
multiple robots (multi-robot path planning) (Ryan, 2007). 
 
Definition 1 (problem of pebble motion on a graph). Let 
us have an undirected graph ( , )G V E= . Next, let us have 
a set of pebbles 

1 2{ , , , }P p p pµ= …  where Vµ < . The 
initial arrangement of the pebbles is defined by a simple 
function 0 :PS P V→ , that is 0 0( ) ( )P i P jS p S p≠  for 
, 1,2, ,i j µ= …  with i j≠ . The goal arrangement of the 

pebbles is defined by a simple function :PS P V+ → , that is  
( ) ( )P i P jS p S p+ +≠  for , 1,2, ,i j µ= …  with i j≠ . The prob-

lem of pebble motion on a graph is a task to find a number 
ξ  and a sequence of motions represented as a sequence of 
vertices 

1 2[ , , , ]p p p

pM m m mξ= …  for every pebble p P∈  
where p

im V∈  for 1,2, ,i ξ= … , 0

1 ( )
p

Pm S p= , ( )
r

l Pm S p
+

= ,  
and either 

1{ , }
p p

i im m E+ ∈  or 
1

p p

i im m +=  for 1,2, ,i = …  
1ξ − . Furthermore, sequences of motions 1[ ,p

pM m=  

2 , , ]p pm mξ…  and  1 2[ , , , ]q q q

qM m m mξ= …  for every two 
pebbles p P∈  and q P∈  such that p q≠  must satisfy 
that 

1

p q

i im m+ ≠  for 1,2, , 1i ξ= −…  (the target vertex must 
be unoccupied) and p q

i im m≠  for 1,2, ,i ξ= …  (no other 
pebble can simultaneously enter the target vertex). □ 
 
 A problem of multi-robot path planning is a relaxation 
of the problem of pebble motion on a graph. The condition 
that the target vertex for a moving pebble/robot must be 
freed in the previous time step is relaxed. A motion of a 
robot entering the target vertex that is simultaneously left 
by another robot is allowed in multi-robot path planning. 
The problem is formalized in the following definition. 
 
Definition 2 (problem of multi-robot path planning). 
Again, let us have an undirected graph ( , )G V E=  but now 
instead of pebbles, a set of robots 1 2{ , , , }R r r rµ= …  where 

Vµ <  is given. The initial arrangement of the robots is 
defined by a simple function 0

:RS R V→ , that is 
0 0( ) ( )R i R jS r S r≠  for , 1,2, ,i j µ= …  with i j≠ . The goal 

arrangement of the robots is defined by a simple function 
:RS R V+ → , that is  ( ) ( )R i R jS r S r+ +≠  for , 1,2, ,i j µ= …  

with i j≠ . The problem of multi-robot path planning is a 
task to find a number ζ  and a sequence positions 

1 2[ , , , ]r r r

rO o o oζ= …  for every robot r R∈  where r

io V∈  
for 1,2, ,i ζ= … , 0

1 ( )
r

Ro S r= , ( )
r

k Ro S r
+

= ,  and either 

1{ , }r r

i io o E+ ∈  or 
1

r r

i io o +=  for 1,2, , 1i ζ= −… . Further-

more, sequences of positions 1 2[ , , , ]r r r

rO o o oζ= …  and  

1 2[ , , , ]s s s

sO o o oζ= …  for every two robots r R∈  and s R∈  
such that r s≠  must satisfy that r s

i io o≠  for 1,2, ,i ζ= …  
(no two robots are simultaneously entering the same ver-
tex). □ 
 

 Both problems and their solutions are illustrated in fig-
ure 1. Observe different levels of parallelism. 
 

 
 

Figure 1. An illustration of problems of pebble motion on a 
graph and multi-robot path planning. The task is to move peb-
bles/robots from their initial positions specified by 0

PS / 0

RS  to the 
goal positions specified by PS

+ / RS
+ . A solution of length 7 is 

shown for the problem of pebble motion on a graph and a solution 
of length 5 is shown for the problem of multi-robot path planning. 
Notice the differences in parallelism between both solutions – 
multi-robot path planning allows a higher number of moves to be 
performed in parallel thanks to weaker requirements on solutions. 

Summary of the Basic Properties of the Problems 

Let us now summarize several basic properties of solutions 
of problems of pebble motion on graphs and multi-robot 
path planning. 
 Notice that problem of pebble motion on a graph as well 
as the problem of multi-robot path planning allows a peb-
ble/robot to stay in a vertex for more than a single time 
step within the solution. It is also possible that a peb-
ble/robot may visit the same vertex several times within 
the solution. Notice further that both problems intrinsically 
allow parallel movements of pebbles/robots. That is, more 
than one pebble/robot can move in a single time step. 
However, multi-robot path planning allows higher motion 
parallelism due to its weaker requirements (the target ver-
tex is not required to be unoccupied in the previous time 
step before it is entered – see figure 1). To have a paral-
lelism in the problem of pebble motion in a graph, more 
than one unoccupied vertex is necessary. On the other 
hand, it is sufficient to have a single unoccupied vertex to 
obtain parallelism in the solution of multi-robot path plan-
ning (consider for example robots moving around a cycle). 
 It is not difficult to observe that a solution to an instance 
of the problem of pebble motion on a graph is also a solu-
tion to the corresponding multi-robot path planning prob-
lem. 
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 There is a variety of modifications of the defined prob-
lems. A natural additional requirement is to produce a 
shortest possible solution (that is, we require the numbers 
ξ  or ζ  respectively to be as small as possible). Unfortu-
nately, this requirement makes the problem intractable 
(namely �P-hard; (Ratner & Warmuth, 1986)) while with-
out the requirement both problems are in the P class 
(Kornhauser et al., 1984). Nevertheless, we are usually 
concerned about the length of the solution in the real life 
situations. Taking into account the fact that existing fast 
sub-optimal methods (Kornhauser et al., 1984) generate 
too long solutions, we need some alternative sub-optimal 
solving method. 
 All the algorithms developed in the following sections 
are designed for the problem of pebble motion on a graph. 
This is without loss of generality, since we know that algo-
rithms for pebble motion on a graph apply also for multi-
robot path planning. The parallelism within the solution of 
the multi-robot path planning problem can be increased in 
a post-processing step using a critical path method. Never-
theless, this issue is out of scope of this paper, for further 
details we refer the reader to (Russell & Norvig, 2003; 
Surynek, 2009c). 

A Special Case with Bi-connected Graph 

A special case of the problem is addressed in this paper. A 
case where the graph modeling the environment is bi-
connected and there is only one unoccupied vertex (that is, 

1Vµ = − ) is studied. 

Graph Theoretical Preliminaries 
Let us recall some graph theoretical notions (West, 2000) 
that represent foundations for algorithms presented further. 
 

Definition 3 (graph connectivity). An undirected graph 
( , )G V E=  is connected, if 2V ≥  and for every pair of 

distinct vertices ,u v V∈  there is a path connecting u  and 
v  consisting of edges from E .  □ 

 

Definition 4 (graph bi-connectivity). An undirected graph 
( , )G V E=  is bi-connected, if 3V ≥  and the graph 
( { }, {{ , }| , })G V v E u w u w V u v w v′ = − ∩ ∈ ∧ ≠ ∧ ≠  is 

connected for every v V∈ .  □ 
 

Bi-connected graphs have an important well known 
property which we exploit further. Each bi-connected 
graph can be constructed starting with a cycle by an opera-
tion of adding loop (handle) to the graph (Tarjan, 1972; 
West, 2000). 

Adding a loop which is a sequence of vertices 

1 2[ , , ,..., , ]lL u x x x v=  to an undirected graph ( , )G V E=  
where ,u v V∈  and 

ix V∉  for 1,2, ,i l= …  (
ix  are new 

vertices) means to create a new graph ' ( ', ')G V E= ; where 

1 2{ , , , }lV V x x x′ = ∪ …  and either {{ , }}E E u v′ = ∪  in the 
case when  0l =  or 

1 1 2 1{{ , },{ , }, ,{ , },l lE E u x x x x x−
′ = ∪ …  

{ , }}lx v  in the case when 1l ≥ . As a preparation for the 
design of algorithms, the loop L  is assigned a cycle ( )C L  
if the graph G  is connected. The cycle ( )C L  consists of 
vertices on a path between u  and  v  in G  followed by 

vertices 1 2, , , lx x x… . Let us call the above construction 
sequence of the bi-connected graph a loop decomposition. 
 

Lemma 1 (loop decomposition) (Tarjan, 1972; West, 
2000). Any bi-connected graph ( , )G V E=  can be obtained 
from a cycle by the operation of adding a loop. Moreo-
ver, the corresponding loop decomposition can be effec-
tively found in the worst case time of  (| | | |)O V E+ . ■ 

 

Due to the inductive character of the lemma 1, observe 
that the currently constructed graph is bi-connected at any 
stage of the construction. 

Optimal Macros in Bi-connected Graphs 
We are about to exploit certain kind of a solution database 
containing pre-calculated optimal solutions to special sub-
problems. Our concept of solution database is similar to the 
common concept of pattern database (Culberson & Schaef-
fer, 1996). The difference is that instead of storing values 
of a heuristic function we are storing the complete solu-
tions. 
 The structurally simplest solvable sub-problem of the 
pebble motion problem consists of a so-called θ-like graph 
(see figure 2) where there is a single unoccupied vertex 
(Surynek, 2009b). 
 

Definition 5 (θθθθ-like graph). Let 
1 2{ , , , }aA x x x= … , 

1 2{ , , , }bB y y y= … , and 
1 2{ , , , }cC z z z= …  be finite sets (of 

vertices)  where 1 2 1A B C≥ ∧ ≥ ∧ ≥ . A θ-like graph 
( , , ) ( , )G A B C V Eθ θ θ=  is an undirected graph where 

V A B Cθ = ∪ ∪  and Eθ = 1 2 1 1 2{{ , }, ,{ , },{ , },a ax x x x y y−…   

1,{ , },b by y−…  
1 2 1{ , }, ,{ , },c cz z z z−…

 1 1{ , },{ , },a bx y x y 1{ ,y

1},{ , }}b cz y z . □ 
 

 
Figure 2: An example of θ-like graph. The task is to transpose 
pebbles p1 and p3. 

 

The number of all the possible θ-like graphs grows as 
polynomial with respect to the number of vertices (namely 
they are 

3
( )O Vθ ). However, the number of all the possible 

pebble motion problems on θ-like graphs grows exponen-
tially with respect to the number of vertices (they are pro-
portional to the number of permutations of the set of ver-
tices). Hence, a restriction on the number of problems 
whose solution will be stored in the solution database must 
be made. Additionally, we need such problems from which 
a solution to the general problem can be composed. The 
following cases of problems satisfy both. 

In the following text, we suppose (without loss of gene-
rality) that the unoccupied vertex in the initial and the goal 
arrangements of pebbles in θ-like graphs is the vertex 
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Definition 6 (transposition case). Let ( , , )G A B Cθ  be a 
θ-like graph and let 

1 2{ , , , }P p p pµ= …  be a set of pebbles 
with 1Vθµ = − . The pebble motion problem on a graph 
with the initial arrangement 0

PS  and the goal arrangement 

PS
+  is called a transposition case, if there are pebbles 
,p q P∈  such that p q≠  and 0 ( ) ( )P PS p S q+= , 
0
( ) ( )P PS q S p

+
= , and 0

( )( , ( ) ( ))P Pr P r p q S r S r
+

∀ ∈ ≠ ⇒ =  
(see figure 2). □ 
 

Definition 7 (3-cycle rotation case). Let ( , , )G A B Cθ  be a 
θ-like graph and let 

1 2{ , , , }P p p pµ= …  be a set of pebbles 
with 1Vθµ = − . The pebble motion problem on a graph 
with the initial arrangement 0

PS  and the goal arrangement 

PS
+  is called a 3-cycle rotation case, if there are pebbles 
, ,p q s P∈  such that p , q , s  are pair-wise distinct and 
0
( ) ( )P PS p S q

+
= , 0

( ) ( )P PS q S s
+

= , 0
( ) ( )P PS s S p

+
= , and 

( )( , ,r P r p q s∀ ∈ ≠ ⇒ 0
( ) ( ))P PS r S r

+
=  (see figure 2). □ 

 
 Both, the number of transposition cases as well as the 
number of 3-cycle rotation cases, grow polynomially with 
respect to the number of vertices (they are 

5
( )O Vθ  and 

6
( )O Vθ  respectively; three numbers are necessary for 

identifying a θ-like graph and two or three numbers are 
necessary to identify vertices involved in the transposition 
or the 3-cycle rotation case respectively). Thus it is realis-
tic to store all the optimal solutions (macros) of the de-
scribed cases up to the certain size of θ-like graphs in the 
solution database. 
 The following two lemmas summarize usefulness of the 
transposition case and the 3-cycle rotation case for solving 
the general problem. 
 

Lemma 2 (solvability – transposition case) (Wilson, 
1974). A transposition case of the pebble motion problem 
on a θ-like graph ( , , )G A B Cθ  with 2 3A B≠ ∨ ≠ ∨  

2C ≠  is solvable, if and only if Gθ  contains a cycle of 
the odd length. A solution to any problem of pebble mo-
tion on a θ-like graph ( , , ) ( , )G A B C V Eθ θ θ=  can be com-
posed of at most 2Vθ −  solutions to transposition cases 
in the same graph. Moreover, a sequence of transposition 
cases whose solutions are necessary for producing the 
overall solution can be determined in the worst case time 
of ( )O Vθ . ■ 

 

The goal arrangement of robots 
PS
+  in a θ-like graph 

( , , ) ( , )G A B C V Eθ θ θ=  can be regarded as a permutation 
over 1Vθ −  elements with respect to the initial arrange-
ment 0

PS .  
PS
+  represents an even permutation with respect 

to 0

PS , if it is reachable using the even number of solutions 
to transposition cases. Otherwise it represents an odd per-
mutation. 

 

Lemma 3 (solvability – 3-cycle case) (Kornhauser et al., 
1984). A 3-cycle rotation case of the problem of pebble 
motion on a θ-like graph ( , , )G A B Cθ  with 2A ≠ ∨  

3 2B C≠ ∨ ≠  is always solvable. A solution to any peb-
ble motion problem whose goal arrangement of pebbles 

PS +  represents an even permutation with respect to the 
initial arrangement 0

PS  in a θ-like graph ( , , )G A B Cθ =
( , )V Eθ θ  can be composed of at most 2Vθ −  solutions to 

3-cycle rotation cases in the same graph. Moreover, a 
sequence of 3-cycle rotation cases necessary for the task 
can be effectively determined in the worst case time of 

( )O Vθ . ■ 
 

 The exception of ( , , )G A B Cθ  with 2 3A B= ∧ = ∧
2C = can be solved separately. Due to small size of this 

exception, solutions to all the problems over this graph can 
be pre-calculated into the solution database (that is, solu-
tions for all permutations of pebbles are stored). 
 At this point, we know how to solve the general pebble 
motion problem on a θ-like graph by composing a solution 
of the macros for transposition and 3-cycle case. Let us 
now further generalize the approach for all the bi-
connected graphs. 

A covering of the given bi-connected graph with θ-like 
sub-graphs is the first step. That is, a set of θ-like graphs 

1 2, , , tθ θ θ…  such that 
1

t

i iG θ== ∪  is needed. Let us call this 
covering a θ-decomposition of the bi-connected graph. If 
such θ-decomposition is available, then the remaining 
question is how to move robots to their target θ-like sub-
graphs of the θ-decomposition. Goal positions of robots 
within θ-like sub-graphs can be then reached using macros 
from the solution database. The following lemmas justify 
the existence of  θ-decomposition of the bi-connected 
graph. 
 

Lemma 4 (two disjoint paths) (West, 2000). Let 
( , )G V E=  be a bi-connected graph and let ,u v V∈  be two 

distinct vertices. There exist two vertex disjoint paths 
between u  and v . Moreover, these two path can be effec-
tively determined in the worst case time of (| | | |)O V E+ . ■ 
 

Lemma 5 (θθθθ-decomposition). Let ( , )G V E=  be a bi-
connected graph not being a single cycle. Then there exists 
a θθθθ-decomposition 

1 2, , , tθ θ θ…  (
iθ  is a θ-like graph for 

1,2, ,i t= … ) such that 
1

t

i iG θ== ∪ .  Moreover, the 
θ-decomposition of the graph can be effectively found in 

(| | | |)O V E+ . ■ 
 

Proof. From lemma 1, we know that there exists a loop 
decomposition of the bi-connected graph G . Consider the 
last loop 1 2[ , , ,..., , ]lL u x x x v=  of the loop decomposition. 
The graph G  without the loop L  is again a bi-connected 
graph, let us denote it G− . Using lemma 4, there exist two 
vertex disjoint paths ,π ψ  connecting u  and v  in G

− . 
Now ( , , )G Lθ π ψ  is the θ-like graph. Inductively suppose 
to have a θ-decomposition of G− . Together with 

( , , )G Lθ π ψ  we have the θ-decomposition of  G . ■ 

Solving Algorithms for Bi-connected Case 

Two algorithms for solving pebble motion problems on a 
bi-connected graph ( , )G V E=  with a single unoccupied 
vertex ( 1Vµ = − ) are presented below. Both algorithms 
assume that a loop decomposition of the graph G  was 
constructed. That is, we have a cycle 

0C  and a sequence of 
loops 

1 2, , , tL L L…  such that the graph G  can be con-
structed from 

0C  by adding loops 
1 2, , , tL L L…  incremen-



tally. If the graph G  contains a cycle of odd length, 0C  is 
also supposed to be of odd length. Since the construction 
of the graph G  starts with a cycle 0C  (which is a con-
nected graph) ( )iC L  is defined for every 1,2, ,i t= … . 
Specially, we define 0 0( )C C C= . 

To reduce the complexity of the pseudo-code of algo-
rithms we assume the unoccupied vertex of the goal ar-
rangement 

PS
+  to be in the cycle 0C  (that is, 

( ( ) ( ) )Pv V p P S p v+∈ ∧ ∀ ∈ ≠ 0v C⇒ ∈ ). Overcoming this 
assumption is discussed in the next section. 

Except the functions 0

PS  and 
PS +  we further have a func-

tion :PS P V→  expressing current positions of pebbles. 
Next, we have functions 0 : { }P V PΦ → ∪ ⊥ , 

: { }P V P
+

Φ → ∪ ⊥ ,  and : { }P V PΦ → ∪ ⊥  which are 
generalized inverses of 0

PS , PS + , and PS  respectively; the 
symbol ⊥  stands for unoccupied vertex (that is, 
( ) ( ( ))P Pp P S p p∀ ∈ Φ = ; ( )P vΦ =⊥ if ( ) ( )Pp P S p v∀ ∈ ≠ ). 
Next, we assume that we have a sequence of potentially 
infinite sequences representing the solution of the problem 

1 2
[ , , , ]p p pM M M

µ
… . 

An Algorithm Based on θ-decomposition 

In this section, we describe an improvement of the solving 
algorithm from (Kornhauser et al., 1984).  
 
 

Algorithm 1. The MIT-θ algorithm. The algorithm solves a given 
pebble motion problem on a bi-connected graph modeling the 
environment with a single unoccupied vertex. 
  

function MIT-θ-Solve 0( , , )P PG S S + : pair 

1: 0ζ ← ; 0

P PS S←  
2: for , 1, ,2c t t= − …  do 
3:  if | | 2cL >  then 
4:   SolveRegular-θ ( )c  
5: let 

1 2 1[ , , , , , ]lu x x x v L=…  
6: let ,π ψ  be two disjoint paths between 
7:  u and v  in 

0C  
8: θ-BOX-Solve

1( ( , , ), , )P PG L S Sθ π ψ +  
9: return 

1 2
( ,[ , , , ])r r rM M M

µ
ζ …  

 

 

 

procedure SolveRegular-θ ( )c  
1: let 

1 2[ , , , , , ]l cu x x x v L=…  
2: lock ( )cL ; unlock ({ , })u v  
3: let ,π ψ  be two disjoint paths between u  
4:  and v  not containing locked vertices 
5: let ( , ) ( , , )cV E G Lθ θ θ π ψ=  
6: for 1,2, ,i l= …  do 
7:  if ( ( ))))P P iS x Vθ

+Φ ∉  then 
8:   lock ( )cL ; unlock ({ , })u v  
9:   MovePebble ( ( ), )P ix v+Φ  
10:  MoveUnoccupied ( )u  
11:  unlock ( )cL  
12:  

PS Sθ

+ ← ; ( ( )) ( ( ))P P PS v S vθ

+ + + +Φ = Φ  
13:  θ-BOX-Solve

1( ( , , ), , )PG L S Sθ θπ ψ +  
14: else 

15:  lock ( )cL ; unlock ({ , })u v  
16:  MoveUnoccupied ( )u  
17:  unlock ( )cL  
18:  

PS Sθ

+ ← ; ( ( )) ( ( ))P i P P iS x S xθ

+ + + +Φ = Φ  
19:  θ-BOX-Solve

1( ( , , ), , )PG L S Sθ θπ ψ +  
20: lock ( )cL ; unlock ({ , })u v  
 
 

procedure MoveUnoccupied ( )v  
1: let x V∈  such that ( )P xΦ =⊥  and x  is not locked 
2: let 1 2[ , , , ]jx k k k u= =…  be a shortest path between 
3:  x  and v in G  not containing locked vertices 
4: for 1,2, , 1i j= −…  do 
5:  SwapPebblesUnoccupied 1( , )i ik k+  
 

procedure MovePebble ( , )p v  
1: let 1 2[ ( ) , , , ]P jS p k k k v= =…  be a shortest path between ( )PS p  and v  
2:   in G  not containing locked vertices 
3: for 1,2, , 1i j= −…  do 
4:  lock ({ })ik  
5:  MoveUnoccupied 1( )ik +  
6:  unlock ({ })ik  
7:  SwapPebbleUnoccupied 1( , )i ik k +  
 

procedure SwapPebblesUnoccupied ( , )u v  
1: ( ( ))P PS u vΦ = ; ( )Pp u= Φ

 
2: ( )P uΦ =⊥ ; ( )P v pΦ =  
3: for 1,2, ,i µ= …  do 
4:  ( )ip

P im S pζ =  
5: 1ζ ζ← +  
 

procedure θ-BOX-Solve 0( ( , , ), , )G A B C S Sθ θ θ

+  
1: let ( , ) ( , , )V E G A B Cθ θ θ=  
2: let 0

1 2 1
{ , , , } { | ( ) }

V
S V

θ θ θτ τ τ τ τ
−

= ∈…  

3: if 2 3 2A B C= ∧ = ∧ =  then 
4:  ApplyMacro 232 0( [ , ])table S Sθ θ

+  
5: else 

6:  0S Sθ θ←  
7:  if Gθ

 contains an odd cycle then 

8:   for 1,2, , 2i Vθ= −…  do 
9:    if ( ) ( )

i i
S Sθ θτ τ+≠  then 

10:    ApplyMacro ( [ ( ), ( )])G

T i i
table S Sθ

θ θτ τ+  
11: else { Gθ

 does not contain any odd cycle} 
12:  if Sθ

+ gives an odd permutation w.r.t. Sθ  then 

13:   fail {the problem is unsolvable} 
14:  else  { Sθ

+  gives an even permutation w.r.t. Sθ } 
15:   for 1,2, , 2i Vθ= −…  do 
16:    if ( ) ( )

i i
S Sθ θτ τ+≠  then 

17:      let 
1 2

( ), ( ), ( ), , ( )
i i

v S S S Sθ θ θ θτ τ τ τ+ + +≠ …  
18:      ApplyMacro

3
( [ ( ), ( ), ])G

i i
table S S vθ

θ θτ τ+  
procedure ApplyMacro ( )σ  
1: let 

1 1 2 2[( , ),( , ) ,( , )]
k k

u v u v u v σ=…  
2: for 1,2, ,i k= …  do 
3:  SwapPebblesUnoccupied ( , )

i i
u v  

4:  ( ( ))
P

S u vθ Φ =  

 
The solving process of 3-cycle case that originally ex-

ploits 3-transitivity of θ-like sub-graphs is replaced by the 
use of macros. The resulting algorithm is called MIT-θ and 
it is formalized below using the pseudo-code as algorithm 
1 (the original version of the algorithm from (Kornhauser 
et al., 1984) is called MIT). The solving algorithm itself is 
represented by the function θ-BOX-Solve with several 
auxiliary functions. Next, there is a procedure θ-BOX-
Solve which represents the solving process within θ-like 
graphs using pre-calculated optimal macros from the solu-
tion database. 

The solving algorithm proceeds inductively according to 
the pre-calculated loop decomposition 

1 2, , , tL L L…  (lines 
2-4 of MIT-θ-Solve). The pebbles are placed to their goal 
positions in loops starting with the last loop 

tL  and contin-
uing to the original cycle with the loop (

0C ,
1L  -  original 

θ-like graph; lines 5-8 of MIT-θ-Solve). Having a loop 
cL  

of the loop decomposition, a corresponding θ-like sub-
graph is considered (lemma 5; lines 1-5 of SolveRegular-

L1 
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θ). All the robots whose goal positions are within the loop 
are placed. Two cases are distinguished. If the pebble to be 
placed is already within the θ-like sub-graph, then a macro 
is used to place it to the right position (lines 14-19 of Sol-
veRegular-θ). If the pebble is outside the θ-like sub-graph, 
then it must be first moved to into the θ-like sub-graph 
before the macro can be applied (lines 7-13 of SolveRegu-
lar-θ). The original cycle 0C  with its loop 1L  is solved 
solely using macros (lines 5-8 of MIT-θ-Solve), since all 
the pebbles whose goal positions are within the original 
θ-like sub-graph are already there. 
 Without proof, let us summarize properties of the algo-
rithm. The MIT-θ algorithm is sound and complete. The 
worst case time complexity is of 

5
( )O V . 

An Algorithm Exploiting Loop Decomposition 

The second algorithm for solving pebble motion problems 
on bi-connected graphs is called BIBOX-θ. 
 
Algorithm 2. The BIBOX-θ algorithm. The algorithm solves a 
given pebble motion problem on a bi-connected graph modeling 
the environment with a single unoccupied vertex. 
  

function BIBOX-θ-Solve 0( , , )P PG S S + : pair 
1: 0ζ ← ; 0

P PS S←  
2: for , 1, ,2c t t= − …  do 
3:  if | | 2cL >  then 
4:   SolveRegularCycle ( )c  
5: let 1 2 1[ , , , , , ]lu x x x v L=…  
6: let ,π ψ  be two disjoint paths between 
7:  u and v  in 0C  
8: θ-BOX-Solve 1( ( , , ), , )P PG L S Sθ π ψ +  
9: return 

1 2
( ,[ , , , ])p p pM M M

µ
ζ …  

 

procedure SolveRegularCycle ( )c  
1: let 1 2[ , , , , , ]l cu x x x v L=…  
2: for 1,2, ,i l= …  do 
3:  if ( ( ))P P i cS x L+Φ ∉  then 
4:   lock ( )cL ; unlock ({ , })u v  
5:   MovePebble ( ( ), )P ix u+Φ  
6:   MoveUnoccupied ( )v  
7:   unlock ( )cL  
8:   RotateCycle+ ( ( ))cC L  
9:  else 
10:  lock ( )cL ; unlock ({ , })u v  
11:  MoveUnoccupied ( )u  
12:  unlock ( )cL  
13:  0ρ ←  
14:  while ( ( )))P P iS x v+Φ ≠  do 
15:   RotateCycle+ ( ( ))

c
C L  

16:   1ρ ρ← +  
17:  lock ( )

c
L ; unlock ({ , })u v  

18:  let ( ( ))
k

i ci c
o V L C L=∈ − ∪∪  

19:  MovePebble ( ( ), )P ix o+Φ  
20:  lock ({ })o  
21:  MoveUnoccupied ( )u  
22:  unlock ( )

c
L  

23:  while 0ρ >  do 
24:   RotateCycle− ( ( ))

c
C L  

25:   1ρ ρ← −  
26:  unlock ({ })o  
27:  MovePebble ( ( ), )P ix u+Φ  
28:  MoveUnoccupied ( )v  
29:  RotateCycle+ ( )

c
L  

30: lock ( )
c

L ; unlock ({ , })u v  
 

procedure RotateCycle+ ( )C  
1: let x C∈  such that ( )P xΦ =⊥  and x  is not locked 
2: for 1,2, ,| |i C= …  do 
3:  SwapPebblesUnoccupied ( / ( , ), )prev V C x x  
4:  / ( , )x prev V C x←  
 

 It is a modification of the algorithm from (Surynek, 
2009a) (the original algorithm is called BIBOX) where the 
last phase of the algorithm placing the pebbles in the origi-
nal cycle 0C  is replaced by solving process over the cor-
responding θ-like sub-graph. The main contribution of this 
approach is that now we need only one unoccupied vertex 
while the original version of the algorithm requires at least 
two unoccupied vertices. 

For easier expressing of the algorithm we have auxiliary 
functions / ( , )next V C v , / ( , )prev V C v  that return the next 
or the previous vertex in the given cycle with respect to the 
clock-wise orientation of the cycle. The solving algorithm 
itself is presented here using pseudo-code as algorithm 2. 

The algorithm proceeds from the last loop to the first 
loop of the loop decomposition. This process is very simi-
lar to the corresponding process within the MIT-θ algo-
rithm. The main difference rests in a manner how the peb-
bles are placed within a loop. Within a loop, pebbles are 
placed to their goal positions in the stack manner (that is, a 
new pebble comes at the beginning of the loop and the 
loop is rotated - stack pushes). The last rotation of the loop 
places the pebbles to their destinations. When placing a 
pebble within the loop it is necessary to distinguish be-
tween the situation when the pebble is outside the loop 
(lines 3-8 of SolveRegularCycle) and the situation when 
the pebble is already within the current loop (lines 10-29 of 
SolveRegularCycle). 

Again without proof, let us summarize properties of the 
algorithm. The BIBOX-θ algorithm is sound and complete. 
The worst case time complexity of the algorithm is 

4
( )O V . 

Extensions and the Real Implementation 

The presented pseudo-codes of the MIT-θ and the 
BIBOX-θ algorithms require a special assumption that the 
finally unoccupied vertex must be in the original cycle. To 
overcome this assumption we need to modify the required 
solution given by the function 

PS
+  so that unoccupied ver-

tex is moved to the original cycle along a path π . After 
solving the problem by the algorithm the unoccupied ver-
tex is moved back along the path π  which finishes the 
solution of the original unmodified problem. 
 If the required record is not in the solution database, 
then the algorithm should switch to solving method based 
on 4-transitivity from (Kornhauser et al., 1984). 

Solving Multi-robot Path Planning Problems 

Having a solving algorithm for the pebble motion problem 
on a graph, it is easy to solve the corresponding multi-
robot path planning problem. We can just proclaim the 
solution of the pebble motion problem to be a solution of 
the corresponding multi-robot path planning problem. 
However, this may waste parallelism. 
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 The more sophisticated approach is to utilize the relaxed 
requirements on the solution in the multi-robot path plan-
ning problem to increase parallelism. The method of 
choice here is critical path (Russell & Norvig, 2003). We 
define a relation of dependence between motions of peb-
bles. Two motions are dependent if one must precede the 
other in the solution (for example two consecutive motions 
of the same pebble are dependent). The (anti-symmetric) 
relation of dependence induces a directed acyclic graph on 
the set of vertices represented by moves. The method of 
critical path can be used to calculate earliest time step for 
each move when it can be executed. A deeper discussion 
about this approach is given in (Surynek, 2009c). 

Experimental Evaluation 

The presented algorithms - MIT-θ and BIBOX-θ as well as 
its competitors - were implemented in C++ and an experi-
mental evaluation was made. The experimental evaluation 
was made on a machine with Pentium 4 2.4 GHz with 
512Mb of memory under Mandriva Linux 10.1. Source 
code and additional data for reproducing all the experi-
ments are available at: http://ktiml.mff.cuni.cz/~surynek/ 
research/icaps2009/. The comparison was concentrated on 
the length of solutions and on the solving runtime. The 
results are presented in figure 3 and 4. 
 

 

 
 

Figure 3. Solution length comparison. Six variants of solving 

algorithms are compared – BIBOX where the solving process for 

original cycle with loop is based on 4-transitivity (BIBOX MIT), 

the original MIT algorithm, MIT-θ where transposition cases are 

preferably used (MIT THETA 2), MIT-θ where 3-cycle rotations 

are preferably used (MIT THETA 3), BIBOX-θ where transposi-

tion cases are preferably used (BIBOX THETA 2), and BIBOX-θ 

where 3-cycle rotations are preferably used (BIBOX THETA 3). 
  

 In all the tests, necessary optimal macros were found in 
the database (that is, the alternative method based on 4-
transitivity was not used). The results show that replace-
ment of the method based on 4-transitivity with optimal 

macros brings significant improvement in solution length 
and solving time of both algorithms. Moreover, the expe-
riments show that all the variants of the BIBOX algorithm 
outperform the MIT algorithm significantly. It is also evi-
dent that the preference of 3-cycle rotation cases is slightly 
better than the preference of transposition case with respect 
to the solution length. However, notice that storing trans-
position cases in the solution database is less space con-
suming. 

 The tests were made on random instances of problems of 
pebble motion on bi-connected graphs where the number 
of vertices ranged from 13 to 48. The number of loops of 
the loop decomposition ranged from 3 to 16. The length of 
loops of the decomposition had the random length with the 
uniform distribution in the interval of 1 8… . All the prob-
lems had a single unoccupied vertex placed randomly 
(generally not in the original cycle). 

 

 

 
 

Figure 4. Solving time comparison. Six variants of solving algo-

rithms are compared – see figure 3. Each problem was solved 

1000 time to accumulate measurable time. 

Related Works and Conclusions 

This work is significantly influenced by (Ryan, 2007). The 
author presents a solving method for the multi-robot path 
planning based on a decomposition of the environment into 
simpler sub-graphs that are easier to tackle. This approach 
has much in common with the approach presented above. 
However, deep theoretical results gained for pebble motion 
on graphs (sliding box puzzles) (Wilson, 1974; Kornhauser 
et al., 1984; Ratner & Warmuth, 1986) are ignored in 
(Ryan, 2007), though they are so closely related to multi-
robot path planning. 

The major aim of this paper is to fill in the gap between 
theory and practical solving of problems of pebble motion 
on graph and multi-robot path planning. We have to em-
phasize that this paper intensively builds on existing works 
while we improve aspects regarding the optimality of solu-
tions. 
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Let us further comment the related works. Graph theoret-
ical properties crucial for tackling the problem were identi-
fied in (Wilson, 1974; Kornhauser et al., 1984). The solv-
ing methods for transposition and 3-cycle rotation cases 
ware developed in (Surynek, 2009b). The less general 
version of the BIBOX algorithm is presented in (Surynek, 
2009a). This version of the BIBOX algorithm requires at 
least two unoccupied vertices in a bi-connected graph. 

 A comparison with domain-independent planners and 
scaling evaluation is also given in (Surynek, 2009b) (LPG-
td and SGPlan were tested; only extremely small pebble 
motion/multi-robot problems are solvable by domain-
independent planners). These results render the domain-
independent approach to be uncompetitive. 

Another interesting approach for solving the problem of 
multi-robot path planning is represented by works (Silver, 
2005) and (Wang & Botea, 2009). They both build upon 
the standard A* search (Russell & Norvig, 2003) while the 
efficiency is increased by searching a path to the destina-
tion for each robot independently if it is possible. Clearly, 
this approach becomes problematic on problems with few 
unoccupied vertices where it is impossible to find a path 
for a robot independently on other robots. In contrast to 
this, our approach works even on extremely crowded 
graphs and does not use any search (which may consume 
exponential time). 

Our work can be summarized as follows. A successful 
application of optimal pre-calculated macros for solving 
problems of pebble motion and multi-robot path planning 
with bi-connected environments has been presented in this 
paper.  One existing algorithm (MIT) was improved by the 
integration of macros. Another algorithm (BIBOX) was 
improved and generalized – the new variant is called 
BIBOX-θθθθ - so that is becomes one of the best algorithms 
(it is better than existing domain-dependent algorithms as 
well as domain independent planners) for solving the stu-
died class of problem in terms of runtime and the quality of 
solutions. For future work we plan to develop techniques 
for post-processing solutions produced by the presented 
algorithms. The post-processing will be aimed on shorten-
ing solutions and increasing parallelism. 
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