
On Pebble Motion on Graphs and

Abstract Multi-robot Path Planning

Pavel Surynek

Charles University in Prague

Faculty of Mathematics and Physics

Department of Theoretical Computer Science and Mathematical Logic

Malostranské náměstí 2/25, 118 00 Praha 1, The Czech Republic

pavel.surynek@mff.cuni.cz

Abstract

A problem of rearranging a group of robots that are moving
in a certain environment is addressed in this paper (multi-
robot path planning). A case when a graph modeling the en-
vironment is bi-connected is particularly studied. The paper
puts into a relation the well known problems of moving
pebbles on graphs (sliding box puzzles) with problems of
multi-robot path planning. Theoretical results gained for
problems of pebble motion on graphs are utilized for the de-
velopment of algorithms for multi-robot path planning. As
the optimization variant of both problems (a shortest solu-
tion is required) is known to be computationally hard (�P-
hard), we concentrate on construction of sub-optimal solv-
ing procedures. However, the quality of solution is still an
objective. A process of a composition of a sub-optimal solu-
tion of the problem of multi-robot path planning (a plan) of
the pre-calculated optimal plans for the sub-problems (ma-
cros) is suggested. The plan composition using macros was
integrated into two existing sub-optimal solving algorithms.
In both cases, substantial improvements of the quality of re-
sulting plans were achieved in comparison to the original
versions. The no less important result is that one of the ex-
isting algorithms was generalized by integrating macros for
a larger class of problems of multi-robot path planning.

Introduction and Motivation

Consider a group of robots moving in a certain environ-
ment where each robot needs to reach a certain goal posi-
tion. The condition that must be preserved during robot
motion is that robots must avoid obstacles and they must
not collide with each other. This problem ranks among the
most challenging problems of artificial intelligence and it
motivates efforts of theorists as well as practicians (Russell
& Norvig, 2003). The main difficulty of the problem arises
from the requirement on the optimality of solutions and
from complex interactions among robots.

The primary motivations for the problem are tasks of
moving objects in tight space. These tasks include rear-
ranging containers in storage yards, coordination of
movements of a large group of automated agents, or opti-
mization of dense traffic. However, this is not the only

Copyright © 2009, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

motivation. Many tasks from virtual spaces can be also
viewed as problems of path planning for multiple robots.
An example may be data transfer with limited buffers at
communication nodes, a coordination of a group of agents
in strategic computer games, or planning movements in
mass scenes in computer-generated imagery. The impor-
tant feature we need to preserve in solving techniques for
the problem is that the group of robots should be treated as
a single entity – intuitively, keeping this in mind allow to
produce solutions of higher quality.

We observed a similarity between the formal definition
of the problem of multi-robot path planning as it is dis-
cussed in (Ryan, 2007) and the problem of pebble motion
on a graph (Kornhauser et al., 1984). As there is lot of
theoretical results for pebble motion on graphs we tried to
utilize these results in our algorithms.
 Both studied problems are computationally difficult
when the shortest possible solution is required (�P-hard)
(Ratner & Warmuth, 1986). Therefore we concentrate on
developing of sub-optimal methods. An approach de-
scribed in this paper is based on the use of pre-calculated
optimal solutions to sub-problems (macros). We success-
fully tried to integrate macros within two existing sub-
optimal algorithms. The resulting solving process proved
to be better in terms of length of solutions (shorter solu-
tions are preferred) as well as in terms of runtime.
 The main contributions of this paper consist in the fol-
lowing aspects: (i) the problem of multi-robot path plan-
ning and the problem of pebble motion on a graph are put
into relation, (ii) two existing algorithms are improved by
integration of macro utilization – one of the described
algorithms is now one of the best algorithms for certain
class of problems, and (iii) this algorithm was also ex-
tended so it is now applicable to more general class of
problems.

Pebble Motion and Multi-robot Path Planning

Consider an environment with a group of mobile robots.
The problem being addressed in this paper consists in find-
ing paths for the group of robots that need to reach certain
goal positions starting from the given initial positions. The
robots must not collide with each other and they must

avoid obstacles in the environment.
 A relatively strong abstraction is adopted in this paper.
The environment where the robots are moving is modeled
as an undirected graph. The vertices of the graph represent
positions in the environment and the edges model an un-
blocked way from one vertex to another. The time is dis-
crete in this abstraction; it is an infinite linearly ordered set
isomorphic to {0,1,2, }… where each element is called a
time step.

Formal Definitions of the Problems

The following two definitions formalizes a problem of
pebble motion on a graph (also called a pebble motion
puzzle or sliding box puzzle) (Wilson, 1974; Kornhauser et
al., 1984) and the related problem of path planning for
multiple robots (multi-robot path planning) (Ryan, 2007).

Definition 1 (problem of pebble motion on a graph). Let
us have an undirected graph (,)G V E= . Next, let us have
a set of pebbles

1 2{ , , , }P p p pµ= … where Vµ < . The
initial arrangement of the pebbles is defined by a simple
function 0 :PS P V→ , that is 0 0() ()P i P jS p S p≠ for
, 1,2, ,i j µ= … with i j≠ . The goal arrangement of the

pebbles is defined by a simple function :PS P V+ → , that is
() ()P i P jS p S p+ +≠ for , 1,2, ,i j µ= … with i j≠ . The prob-

lem of pebble motion on a graph is a task to find a number
ξ and a sequence of motions represented as a sequence of
vertices

1 2[, , ,]p p p

pM m m mξ= … for every pebble p P∈
where p

im V∈ for 1,2, ,i ξ= … , 0

1 ()
p

Pm S p= , ()
r

l Pm S p
+

= ,
and either

1{ , }
p p

i im m E+ ∈ or
1

p p

i im m += for 1,2, ,i = …
1ξ − . Furthermore, sequences of motions 1[,p

pM m=

2 , ,]p pm mξ… and 1 2[, , ,]q q q

qM m m mξ= … for every two
pebbles p P∈ and q P∈ such that p q≠ must satisfy
that

1

p q

i im m+ ≠ for 1,2, , 1i ξ= −… (the target vertex must
be unoccupied) and p q

i im m≠ for 1,2, ,i ξ= … (no other
pebble can simultaneously enter the target vertex). □

 A problem of multi-robot path planning is a relaxation
of the problem of pebble motion on a graph. The condition
that the target vertex for a moving pebble/robot must be
freed in the previous time step is relaxed. A motion of a
robot entering the target vertex that is simultaneously left
by another robot is allowed in multi-robot path planning.
The problem is formalized in the following definition.

Definition 2 (problem of multi-robot path planning).
Again, let us have an undirected graph (,)G V E= but now
instead of pebbles, a set of robots 1 2{ , , , }R r r rµ= … where

Vµ < is given. The initial arrangement of the robots is
defined by a simple function 0

:RS R V→ , that is
0 0() ()R i R jS r S r≠ for , 1,2, ,i j µ= … with i j≠ . The goal

arrangement of the robots is defined by a simple function
:RS R V+ → , that is () ()R i R jS r S r+ +≠ for , 1,2, ,i j µ= …

with i j≠ . The problem of multi-robot path planning is a
task to find a number ζ and a sequence positions

1 2[, , ,]r r r

rO o o oζ= … for every robot r R∈ where r

io V∈
for 1,2, ,i ζ= … , 0

1 ()
r

Ro S r= , ()
r

k Ro S r
+

= , and either

1{ , }r r

i io o E+ ∈ or
1

r r

i io o += for 1,2, , 1i ζ= −… . Further-

more, sequences of positions 1 2[, , ,]r r r

rO o o oζ= … and

1 2[, , ,]s s s

sO o o oζ= … for every two robots r R∈ and s R∈
such that r s≠ must satisfy that r s

i io o≠ for 1,2, ,i ζ= …
(no two robots are simultaneously entering the same ver-
tex). □

 Both problems and their solutions are illustrated in fig-
ure 1. Observe different levels of parallelism.

Figure 1. An illustration of problems of pebble motion on a
graph and multi-robot path planning. The task is to move peb-
bles/robots from their initial positions specified by 0

PS / 0

RS to the
goal positions specified by PS

+ / RS
+ . A solution of length 7 is

shown for the problem of pebble motion on a graph and a solution
of length 5 is shown for the problem of multi-robot path planning.
Notice the differences in parallelism between both solutions –
multi-robot path planning allows a higher number of moves to be
performed in parallel thanks to weaker requirements on solutions.

Summary of the Basic Properties of the Problems

Let us now summarize several basic properties of solutions
of problems of pebble motion on graphs and multi-robot
path planning.
 Notice that problem of pebble motion on a graph as well
as the problem of multi-robot path planning allows a peb-
ble/robot to stay in a vertex for more than a single time
step within the solution. It is also possible that a peb-
ble/robot may visit the same vertex several times within
the solution. Notice further that both problems intrinsically
allow parallel movements of pebbles/robots. That is, more
than one pebble/robot can move in a single time step.
However, multi-robot path planning allows higher motion
parallelism due to its weaker requirements (the target ver-
tex is not required to be unoccupied in the previous time
step before it is entered – see figure 1). To have a paral-
lelism in the problem of pebble motion in a graph, more
than one unoccupied vertex is necessary. On the other
hand, it is sufficient to have a single unoccupied vertex to
obtain parallelism in the solution of multi-robot path plan-
ning (consider for example robots moving around a cycle).
 It is not difficult to observe that a solution to an instance
of the problem of pebble motion on a graph is also a solu-
tion to the corresponding multi-robot path planning prob-
lem.

v1

v2

v3

v5

v4

v8

v7

1

2

3

S0
P= S0

R S+
P= S+

R

M1=[v1, v4, v7, v8, v9, v9, v9]
M2=[v2, v2, v1, v4, v7, v8, v8]
M3=[v3, v3, v3, v2, v1, v4, v7]

ξξξξ=7

1 2 3 4 5 6 7

Step:

v6 v9

v1

v2

v3

v5

v4

v8

v7

2

3

v6 v9

1

O1=[v1, v4, v7, v8, v9]
O2=[v2, v1, v4, v7, v8]
O3=[v3, v2, v1, v4, v7]

ζζζζ=5

Step: 1 2 3 4 5

Solution of Pebble Motion
Problem with P={1,2,3}

Solution of Multi-robot Path
Planning Problem with R={1,2,3}

 There is a variety of modifications of the defined prob-
lems. A natural additional requirement is to produce a
shortest possible solution (that is, we require the numbers
ξ or ζ respectively to be as small as possible). Unfortu-
nately, this requirement makes the problem intractable
(namely �P-hard; (Ratner & Warmuth, 1986)) while with-
out the requirement both problems are in the P class
(Kornhauser et al., 1984). Nevertheless, we are usually
concerned about the length of the solution in the real life
situations. Taking into account the fact that existing fast
sub-optimal methods (Kornhauser et al., 1984) generate
too long solutions, we need some alternative sub-optimal
solving method.
 All the algorithms developed in the following sections
are designed for the problem of pebble motion on a graph.
This is without loss of generality, since we know that algo-
rithms for pebble motion on a graph apply also for multi-
robot path planning. The parallelism within the solution of
the multi-robot path planning problem can be increased in
a post-processing step using a critical path method. Never-
theless, this issue is out of scope of this paper, for further
details we refer the reader to (Russell & Norvig, 2003;
Surynek, 2009c).

A Special Case with Bi-connected Graph

A special case of the problem is addressed in this paper. A
case where the graph modeling the environment is bi-
connected and there is only one unoccupied vertex (that is,

1Vµ = −) is studied.

Graph Theoretical Preliminaries
Let us recall some graph theoretical notions (West, 2000)
that represent foundations for algorithms presented further.

Definition 3 (graph connectivity). An undirected graph
(,)G V E= is connected, if 2V ≥ and for every pair of

distinct vertices ,u v V∈ there is a path connecting u and
v consisting of edges from E . □

Definition 4 (graph bi-connectivity). An undirected graph
(,)G V E= is bi-connected, if 3V ≥ and the graph
({ }, {{ , }| , })G V v E u w u w V u v w v′ = − ∩ ∈ ∧ ≠ ∧ ≠ is

connected for every v V∈ . □

Bi-connected graphs have an important well known
property which we exploit further. Each bi-connected
graph can be constructed starting with a cycle by an opera-
tion of adding loop (handle) to the graph (Tarjan, 1972;
West, 2000).

Adding a loop which is a sequence of vertices

1 2[, , ,..., ,]lL u x x x v= to an undirected graph (,)G V E=
where ,u v V∈ and

ix V∉ for 1,2, ,i l= … (
ix are new

vertices) means to create a new graph ' (', ')G V E= ; where

1 2{ , , , }lV V x x x′ = ∪ … and either {{ , }}E E u v′ = ∪ in the
case when 0l = or

1 1 2 1{{ , },{ , }, ,{ , },l lE E u x x x x x−
′ = ∪ …

{ , }}lx v in the case when 1l ≥ . As a preparation for the
design of algorithms, the loop L is assigned a cycle ()C L
if the graph G is connected. The cycle ()C L consists of
vertices on a path between u and v in G followed by

vertices 1 2, , , lx x x… . Let us call the above construction
sequence of the bi-connected graph a loop decomposition.

Lemma 1 (loop decomposition) (Tarjan, 1972; West,
2000). Any bi-connected graph (,)G V E= can be obtained
from a cycle by the operation of adding a loop. Moreo-
ver, the corresponding loop decomposition can be effec-
tively found in the worst case time of (| | | |)O V E+ . ■

Due to the inductive character of the lemma 1, observe
that the currently constructed graph is bi-connected at any
stage of the construction.

Optimal Macros in Bi-connected Graphs
We are about to exploit certain kind of a solution database
containing pre-calculated optimal solutions to special sub-
problems. Our concept of solution database is similar to the
common concept of pattern database (Culberson & Schaef-
fer, 1996). The difference is that instead of storing values
of a heuristic function we are storing the complete solu-
tions.
 The structurally simplest solvable sub-problem of the
pebble motion problem consists of a so-called θ-like graph
(see figure 2) where there is a single unoccupied vertex
(Surynek, 2009b).

Definition 5 (θθθθ-like graph). Let
1 2{ , , , }aA x x x= … ,

1 2{ , , , }bB y y y= … , and
1 2{ , , , }cC z z z= … be finite sets (of

vertices) where 1 2 1A B C≥ ∧ ≥ ∧ ≥ . A θ-like graph
(, ,) (,)G A B C V Eθ θ θ= is an undirected graph where

V A B Cθ = ∪ ∪ and Eθ = 1 2 1 1 2{{ , }, ,{ , },{ , },a ax x x x y y−…

1,{ , },b by y−…
1 2 1{ , }, ,{ , },c cz z z z−…

 1 1{ , },{ , },a bx y x y 1{ ,y

1},{ , }}b cz y z . □

Figure 2: An example of θ-like graph. The task is to transpose
pebbles p1 and p3.

The number of all the possible θ-like graphs grows as
polynomial with respect to the number of vertices (namely
they are

3
()O Vθ). However, the number of all the possible

pebble motion problems on θ-like graphs grows exponen-
tially with respect to the number of vertices (they are pro-
portional to the number of permutations of the set of ver-
tices). Hence, a restriction on the number of problems
whose solution will be stored in the solution database must
be made. Additionally, we need such problems from which
a solution to the general problem can be composed. The
following cases of problems satisfy both.

In the following text, we suppose (without loss of gene-
rality) that the unoccupied vertex in the initial and the goal
arrangements of pebbles in θ-like graphs is the vertex

1y .

x1

x2

x3

z1

z2

y1

y2

y3S
0
P

 S
+

P

p1

p2

p3
p5

p4

p6

p7

x1

x2

x3

z1

z2

y1

y2

y3

p2

p3

p1
p5

p4

p6

p7

Gθθθθ({x1,x2,x3},{y1,y2,y3},{z1,z2})

Definition 6 (transposition case). Let (, ,)G A B Cθ be a
θ-like graph and let

1 2{ , , , }P p p pµ= … be a set of pebbles
with 1Vθµ = − . The pebble motion problem on a graph
with the initial arrangement 0

PS and the goal arrangement

PS
+ is called a transposition case, if there are pebbles
,p q P∈ such that p q≠ and 0 () ()P PS p S q+= ,
0
() ()P PS q S p

+
= , and 0

()(, () ())P Pr P r p q S r S r
+

∀ ∈ ≠ ⇒ =
(see figure 2). □

Definition 7 (3-cycle rotation case). Let (, ,)G A B Cθ be a
θ-like graph and let

1 2{ , , , }P p p pµ= … be a set of pebbles
with 1Vθµ = − . The pebble motion problem on a graph
with the initial arrangement 0

PS and the goal arrangement

PS
+ is called a 3-cycle rotation case, if there are pebbles
, ,p q s P∈ such that p , q , s are pair-wise distinct and
0
() ()P PS p S q

+
= , 0

() ()P PS q S s
+

= , 0
() ()P PS s S p

+
= , and

()(, ,r P r p q s∀ ∈ ≠ ⇒ 0
() ())P PS r S r

+
= (see figure 2). □

 Both, the number of transposition cases as well as the
number of 3-cycle rotation cases, grow polynomially with
respect to the number of vertices (they are

5
()O Vθ and

6
()O Vθ respectively; three numbers are necessary for

identifying a θ-like graph and two or three numbers are
necessary to identify vertices involved in the transposition
or the 3-cycle rotation case respectively). Thus it is realis-
tic to store all the optimal solutions (macros) of the de-
scribed cases up to the certain size of θ-like graphs in the
solution database.
 The following two lemmas summarize usefulness of the
transposition case and the 3-cycle rotation case for solving
the general problem.

Lemma 2 (solvability – transposition case) (Wilson,
1974). A transposition case of the pebble motion problem
on a θ-like graph (, ,)G A B Cθ with 2 3A B≠ ∨ ≠ ∨

2C ≠ is solvable, if and only if Gθ contains a cycle of
the odd length. A solution to any problem of pebble mo-
tion on a θ-like graph (, ,) (,)G A B C V Eθ θ θ= can be com-
posed of at most 2Vθ − solutions to transposition cases
in the same graph. Moreover, a sequence of transposition
cases whose solutions are necessary for producing the
overall solution can be determined in the worst case time
of ()O Vθ . ■

The goal arrangement of robots
PS
+ in a θ-like graph

(, ,) (,)G A B C V Eθ θ θ= can be regarded as a permutation
over 1Vθ − elements with respect to the initial arrange-
ment 0

PS .
PS
+ represents an even permutation with respect

to 0

PS , if it is reachable using the even number of solutions
to transposition cases. Otherwise it represents an odd per-
mutation.

Lemma 3 (solvability – 3-cycle case) (Kornhauser et al.,
1984). A 3-cycle rotation case of the problem of pebble
motion on a θ-like graph (, ,)G A B Cθ with 2A ≠ ∨

3 2B C≠ ∨ ≠ is always solvable. A solution to any peb-
ble motion problem whose goal arrangement of pebbles

PS + represents an even permutation with respect to the
initial arrangement 0

PS in a θ-like graph (, ,)G A B Cθ =
(,)V Eθ θ can be composed of at most 2Vθ − solutions to

3-cycle rotation cases in the same graph. Moreover, a
sequence of 3-cycle rotation cases necessary for the task
can be effectively determined in the worst case time of

()O Vθ . ■

 The exception of (, ,)G A B Cθ with 2 3A B= ∧ = ∧
2C = can be solved separately. Due to small size of this

exception, solutions to all the problems over this graph can
be pre-calculated into the solution database (that is, solu-
tions for all permutations of pebbles are stored).
 At this point, we know how to solve the general pebble
motion problem on a θ-like graph by composing a solution
of the macros for transposition and 3-cycle case. Let us
now further generalize the approach for all the bi-
connected graphs.

A covering of the given bi-connected graph with θ-like
sub-graphs is the first step. That is, a set of θ-like graphs

1 2, , , tθ θ θ… such that
1

t

i iG θ== ∪ is needed. Let us call this
covering a θ-decomposition of the bi-connected graph. If
such θ-decomposition is available, then the remaining
question is how to move robots to their target θ-like sub-
graphs of the θ-decomposition. Goal positions of robots
within θ-like sub-graphs can be then reached using macros
from the solution database. The following lemmas justify
the existence of θ-decomposition of the bi-connected
graph.

Lemma 4 (two disjoint paths) (West, 2000). Let
(,)G V E= be a bi-connected graph and let ,u v V∈ be two

distinct vertices. There exist two vertex disjoint paths
between u and v . Moreover, these two path can be effec-
tively determined in the worst case time of (| | | |)O V E+ . ■

Lemma 5 (θθθθ-decomposition). Let (,)G V E= be a bi-
connected graph not being a single cycle. Then there exists
a θθθθ-decomposition

1 2, , , tθ θ θ… (
iθ is a θ-like graph for

1,2, ,i t= …) such that
1

t

i iG θ== ∪ . Moreover, the
θ-decomposition of the graph can be effectively found in

(| | | |)O V E+ . ■

Proof. From lemma 1, we know that there exists a loop
decomposition of the bi-connected graph G . Consider the
last loop 1 2[, , ,..., ,]lL u x x x v= of the loop decomposition.
The graph G without the loop L is again a bi-connected
graph, let us denote it G− . Using lemma 4, there exist two
vertex disjoint paths ,π ψ connecting u and v in G

− .
Now (, ,)G Lθ π ψ is the θ-like graph. Inductively suppose
to have a θ-decomposition of G− . Together with

(, ,)G Lθ π ψ we have the θ-decomposition of G . ■

Solving Algorithms for Bi-connected Case

Two algorithms for solving pebble motion problems on a
bi-connected graph (,)G V E= with a single unoccupied
vertex (1Vµ = −) are presented below. Both algorithms
assume that a loop decomposition of the graph G was
constructed. That is, we have a cycle

0C and a sequence of
loops

1 2, , , tL L L… such that the graph G can be con-
structed from

0C by adding loops
1 2, , , tL L L… incremen-

tally. If the graph G contains a cycle of odd length, 0C is
also supposed to be of odd length. Since the construction
of the graph G starts with a cycle 0C (which is a con-
nected graph) ()iC L is defined for every 1,2, ,i t= … .
Specially, we define 0 0()C C C= .

To reduce the complexity of the pseudo-code of algo-
rithms we assume the unoccupied vertex of the goal ar-
rangement

PS
+ to be in the cycle 0C (that is,

(() ())Pv V p P S p v+∈ ∧ ∀ ∈ ≠ 0v C⇒ ∈). Overcoming this
assumption is discussed in the next section.

Except the functions 0

PS and
PS + we further have a func-

tion :PS P V→ expressing current positions of pebbles.
Next, we have functions 0 : { }P V PΦ → ∪ ⊥ ,

: { }P V P
+

Φ → ∪ ⊥ , and : { }P V PΦ → ∪ ⊥ which are
generalized inverses of 0

PS , PS + , and PS respectively; the
symbol ⊥ stands for unoccupied vertex (that is,
() (())P Pp P S p p∀ ∈ Φ = ; ()P vΦ =⊥ if () ()Pp P S p v∀ ∈ ≠).
Next, we assume that we have a sequence of potentially
infinite sequences representing the solution of the problem

1 2
[, , ,]p p pM M M

µ
… .

An Algorithm Based on θ-decomposition

In this section, we describe an improvement of the solving
algorithm from (Kornhauser et al., 1984).

Algorithm 1. The MIT-θ algorithm. The algorithm solves a given
pebble motion problem on a bi-connected graph modeling the
environment with a single unoccupied vertex.

function MIT-θ-Solve 0(, ,)P PG S S + : pair

1: 0ζ ← ; 0

P PS S←
2: for , 1, ,2c t t= − … do
3: if | | 2cL > then
4: SolveRegular-θ ()c
5: let

1 2 1[, , , , ,]lu x x x v L=…
6: let ,π ψ be two disjoint paths between
7: u and v in

0C
8: θ-BOX-Solve

1((, ,), ,)P PG L S Sθ π ψ +
9: return

1 2
(,[, , ,])r r rM M M

µ
ζ …

procedure SolveRegular-θ ()c
1: let

1 2[, , , , ,]l cu x x x v L=…
2: lock ()cL ; unlock ({ , })u v
3: let ,π ψ be two disjoint paths between u
4: and v not containing locked vertices
5: let (,) (, ,)cV E G Lθ θ θ π ψ=
6: for 1,2, ,i l= … do
7: if (())))P P iS x Vθ

+Φ ∉ then
8: lock ()cL ; unlock ({ , })u v
9: MovePebble ((),)P ix v+Φ
10: MoveUnoccupied ()u
11: unlock ()cL
12:

PS Sθ

+ ← ; (()) (())P P PS v S vθ

+ + + +Φ = Φ
13: θ-BOX-Solve

1((, ,), ,)PG L S Sθ θπ ψ +
14: else

15: lock ()cL ; unlock ({ , })u v
16: MoveUnoccupied ()u
17: unlock ()cL
18:

PS Sθ

+ ← ; (()) (())P i P P iS x S xθ

+ + + +Φ = Φ
19: θ-BOX-Solve

1((, ,), ,)PG L S Sθ θπ ψ +
20: lock ()cL ; unlock ({ , })u v

procedure MoveUnoccupied ()v
1: let x V∈ such that ()P xΦ =⊥ and x is not locked
2: let 1 2[, , ,]jx k k k u= =… be a shortest path between
3: x and v in G not containing locked vertices
4: for 1,2, , 1i j= −… do
5: SwapPebblesUnoccupied 1(,)i ik k+

procedure MovePebble (,)p v
1: let 1 2[() , , ,]P jS p k k k v= =… be a shortest path between ()PS p and v
2: in G not containing locked vertices
3: for 1,2, , 1i j= −… do
4: lock ({ })ik
5: MoveUnoccupied 1()ik +
6: unlock ({ })ik
7: SwapPebbleUnoccupied 1(,)i ik k +

procedure SwapPebblesUnoccupied (,)u v
1: (())P PS u vΦ = ; ()Pp u= Φ

2: ()P uΦ =⊥ ; ()P v pΦ =
3: for 1,2, ,i µ= … do
4: ()ip

P im S pζ =
5: 1ζ ζ← +

procedure θ-BOX-Solve 0((, ,), ,)G A B C S Sθ θ θ

+
1: let (,) (, ,)V E G A B Cθ θ θ=
2: let 0

1 2 1
{ , , , } { | () }

V
S V

θ θ θτ τ τ τ τ
−

= ∈…

3: if 2 3 2A B C= ∧ = ∧ = then
4: ApplyMacro 232 0([,])table S Sθ θ

+
5: else

6: 0S Sθ θ←
7: if Gθ

 contains an odd cycle then

8: for 1,2, , 2i Vθ= −… do
9: if () ()

i i
S Sθ θτ τ+≠ then

10: ApplyMacro ([(), ()])G

T i i
table S Sθ

θ θτ τ+
11: else { Gθ

 does not contain any odd cycle}
12: if Sθ

+ gives an odd permutation w.r.t. Sθ then

13: fail {the problem is unsolvable}
14: else { Sθ

+ gives an even permutation w.r.t. Sθ }
15: for 1,2, , 2i Vθ= −… do
16: if () ()

i i
S Sθ θτ τ+≠ then

17: let
1 2

(), (), (), , ()
i i

v S S S Sθ θ θ θτ τ τ τ+ + +≠ …
18: ApplyMacro

3
([(), (),])G

i i
table S S vθ

θ θτ τ+
procedure ApplyMacro ()σ
1: let

1 1 2 2[(,),(,) ,(,)]
k k

u v u v u v σ=…
2: for 1,2, ,i k= … do
3: SwapPebblesUnoccupied (,)

i i
u v

4: (())
P

S u vθ Φ =

The solving process of 3-cycle case that originally ex-

ploits 3-transitivity of θ-like sub-graphs is replaced by the
use of macros. The resulting algorithm is called MIT-θ and
it is formalized below using the pseudo-code as algorithm
1 (the original version of the algorithm from (Kornhauser
et al., 1984) is called MIT). The solving algorithm itself is
represented by the function θ-BOX-Solve with several
auxiliary functions. Next, there is a procedure θ-BOX-
Solve which represents the solving process within θ-like
graphs using pre-calculated optimal macros from the solu-
tion database.

The solving algorithm proceeds inductively according to
the pre-calculated loop decomposition

1 2, , , tL L L… (lines
2-4 of MIT-θ-Solve). The pebbles are placed to their goal
positions in loops starting with the last loop

tL and contin-
uing to the original cycle with the loop (

0C ,
1L - original

θ-like graph; lines 5-8 of MIT-θ-Solve). Having a loop
cL

of the loop decomposition, a corresponding θ-like sub-
graph is considered (lemma 5; lines 1-5 of SolveRegular-

L1

Loop decomposition of the graph G

C0

C(L1)

C(L2)

L2

G=(V,E)

L1

r

C0

C(L1)

C(L2)

L2
r

v

Pebble p is moved

to v by rotating cycle C(L2), C0,
and C(L1)

L1

C0

C(L1)

C(L2)

Lc=L2

u

 v

π

ψ

Gθ(π,Lc,ψ)

L1

C0

C(L1)

C(L2)

Lc=L2

u

 v

π

ψ

Gθ(π,Lc,ψ)

p

Pebble p=ΦP
+
(xi)

outside Gθ; move p to v

Sθ
0
(τi)

Sθ
+
(τi)

v

Gθ(A,B,C)
|A|=2
|B|=3
|C|=2

Sθ
0
(τi)

Sθ
+
(τi)

p

θ). All the robots whose goal positions are within the loop
are placed. Two cases are distinguished. If the pebble to be
placed is already within the θ-like sub-graph, then a macro
is used to place it to the right position (lines 14-19 of Sol-
veRegular-θ). If the pebble is outside the θ-like sub-graph,
then it must be first moved to into the θ-like sub-graph
before the macro can be applied (lines 7-13 of SolveRegu-
lar-θ). The original cycle 0C with its loop 1L is solved
solely using macros (lines 5-8 of MIT-θ-Solve), since all
the pebbles whose goal positions are within the original
θ-like sub-graph are already there.
 Without proof, let us summarize properties of the algo-
rithm. The MIT-θ algorithm is sound and complete. The
worst case time complexity is of

5
()O V .

An Algorithm Exploiting Loop Decomposition

The second algorithm for solving pebble motion problems
on bi-connected graphs is called BIBOX-θ.

Algorithm 2. The BIBOX-θ algorithm. The algorithm solves a
given pebble motion problem on a bi-connected graph modeling
the environment with a single unoccupied vertex.

function BIBOX-θ-Solve 0(, ,)P PG S S + : pair
1: 0ζ ← ; 0

P PS S←
2: for , 1, ,2c t t= − … do
3: if | | 2cL > then
4: SolveRegularCycle ()c
5: let 1 2 1[, , , , ,]lu x x x v L=…
6: let ,π ψ be two disjoint paths between
7: u and v in 0C
8: θ-BOX-Solve 1((, ,), ,)P PG L S Sθ π ψ +
9: return

1 2
(,[, , ,])p p pM M M

µ
ζ …

procedure SolveRegularCycle ()c
1: let 1 2[, , , , ,]l cu x x x v L=…
2: for 1,2, ,i l= … do
3: if (())P P i cS x L+Φ ∉ then
4: lock ()cL ; unlock ({ , })u v
5: MovePebble ((),)P ix u+Φ
6: MoveUnoccupied ()v
7: unlock ()cL
8: RotateCycle+ (())cC L
9: else
10: lock ()cL ; unlock ({ , })u v
11: MoveUnoccupied ()u
12: unlock ()cL
13: 0ρ ←
14: while (()))P P iS x v+Φ ≠ do
15: RotateCycle+ (())

c
C L

16: 1ρ ρ← +
17: lock ()

c
L ; unlock ({ , })u v

18: let (())
k

i ci c
o V L C L=∈ − ∪∪

19: MovePebble ((),)P ix o+Φ
20: lock ({ })o
21: MoveUnoccupied ()u
22: unlock ()

c
L

23: while 0ρ > do
24: RotateCycle− (())

c
C L

25: 1ρ ρ← −
26: unlock ({ })o
27: MovePebble ((),)P ix u+Φ
28: MoveUnoccupied ()v
29: RotateCycle+ ()

c
L

30: lock ()
c

L ; unlock ({ , })u v

procedure RotateCycle+ ()C
1: let x C∈ such that ()P xΦ =⊥ and x is not locked
2: for 1,2, ,| |i C= … do
3: SwapPebblesUnoccupied (/ (,),)prev V C x x
4: / (,)x prev V C x←

 It is a modification of the algorithm from (Surynek,
2009a) (the original algorithm is called BIBOX) where the
last phase of the algorithm placing the pebbles in the origi-
nal cycle 0C is replaced by solving process over the cor-
responding θ-like sub-graph. The main contribution of this
approach is that now we need only one unoccupied vertex
while the original version of the algorithm requires at least
two unoccupied vertices.

For easier expressing of the algorithm we have auxiliary
functions / (,)next V C v , / (,)prev V C v that return the next
or the previous vertex in the given cycle with respect to the
clock-wise orientation of the cycle. The solving algorithm
itself is presented here using pseudo-code as algorithm 2.

The algorithm proceeds from the last loop to the first
loop of the loop decomposition. This process is very simi-
lar to the corresponding process within the MIT-θ algo-
rithm. The main difference rests in a manner how the peb-
bles are placed within a loop. Within a loop, pebbles are
placed to their goal positions in the stack manner (that is, a
new pebble comes at the beginning of the loop and the
loop is rotated - stack pushes). The last rotation of the loop
places the pebbles to their destinations. When placing a
pebble within the loop it is necessary to distinguish be-
tween the situation when the pebble is outside the loop
(lines 3-8 of SolveRegularCycle) and the situation when
the pebble is already within the current loop (lines 10-29 of
SolveRegularCycle).

Again without proof, let us summarize properties of the
algorithm. The BIBOX-θ algorithm is sound and complete.
The worst case time complexity of the algorithm is

4
()O V .

Extensions and the Real Implementation

The presented pseudo-codes of the MIT-θ and the
BIBOX-θ algorithms require a special assumption that the
finally unoccupied vertex must be in the original cycle. To
overcome this assumption we need to modify the required
solution given by the function

PS
+ so that unoccupied ver-

tex is moved to the original cycle along a path π . After
solving the problem by the algorithm the unoccupied ver-
tex is moved back along the path π which finishes the
solution of the original unmodified problem.
 If the required record is not in the solution database,
then the algorithm should switch to solving method based
on 4-transitivity from (Kornhauser et al., 1984).

Solving Multi-robot Path Planning Problems

Having a solving algorithm for the pebble motion problem
on a graph, it is easy to solve the corresponding multi-
robot path planning problem. We can just proclaim the
solution of the pebble motion problem to be a solution of
the corresponding multi-robot path planning problem.
However, this may waste parallelism.

L1

C0

C(L1)

C(L2)

L2

Gθ(π,L1,ψ)

u

v

π
ψ

r

r

p

C0

C(L1)

C(L2)

L1

L2

bi-connected
remainder

r

Pebble p=ΦP
+
(xi)

in u; rotate cycle C(L2) once

r v

u

L1

C0

C(L1)

C(L2)

L2

bi-connected

remainder

rPebble p=ΦP
+
(xi)

inside L2; move p outside C(L2)

v

u

L1

C0

C(L1)

C(L2)

Lc=L2

bi-connected
remainder

r

Pebble p=ΦP
+
(xi)

outside L2; move p to u

u

 v

p

p

p

 The more sophisticated approach is to utilize the relaxed
requirements on the solution in the multi-robot path plan-
ning problem to increase parallelism. The method of
choice here is critical path (Russell & Norvig, 2003). We
define a relation of dependence between motions of peb-
bles. Two motions are dependent if one must precede the
other in the solution (for example two consecutive motions
of the same pebble are dependent). The (anti-symmetric)
relation of dependence induces a directed acyclic graph on
the set of vertices represented by moves. The method of
critical path can be used to calculate earliest time step for
each move when it can be executed. A deeper discussion
about this approach is given in (Surynek, 2009c).

Experimental Evaluation

The presented algorithms - MIT-θ and BIBOX-θ as well as
its competitors - were implemented in C++ and an experi-
mental evaluation was made. The experimental evaluation
was made on a machine with Pentium 4 2.4 GHz with
512Mb of memory under Mandriva Linux 10.1. Source
code and additional data for reproducing all the experi-
ments are available at: http://ktiml.mff.cuni.cz/~surynek/
research/icaps2009/. The comparison was concentrated on
the length of solutions and on the solving runtime. The
results are presented in figure 3 and 4.

Figure 3. Solution length comparison. Six variants of solving

algorithms are compared – BIBOX where the solving process for

original cycle with loop is based on 4-transitivity (BIBOX MIT),

the original MIT algorithm, MIT-θ where transposition cases are

preferably used (MIT THETA 2), MIT-θ where 3-cycle rotations

are preferably used (MIT THETA 3), BIBOX-θ where transposi-

tion cases are preferably used (BIBOX THETA 2), and BIBOX-θ

where 3-cycle rotations are preferably used (BIBOX THETA 3).

 In all the tests, necessary optimal macros were found in
the database (that is, the alternative method based on 4-
transitivity was not used). The results show that replace-
ment of the method based on 4-transitivity with optimal

macros brings significant improvement in solution length
and solving time of both algorithms. Moreover, the expe-
riments show that all the variants of the BIBOX algorithm
outperform the MIT algorithm significantly. It is also evi-
dent that the preference of 3-cycle rotation cases is slightly
better than the preference of transposition case with respect
to the solution length. However, notice that storing trans-
position cases in the solution database is less space con-
suming.

 The tests were made on random instances of problems of
pebble motion on bi-connected graphs where the number
of vertices ranged from 13 to 48. The number of loops of
the loop decomposition ranged from 3 to 16. The length of
loops of the decomposition had the random length with the
uniform distribution in the interval of 1 8… . All the prob-
lems had a single unoccupied vertex placed randomly
(generally not in the original cycle).

Figure 4. Solving time comparison. Six variants of solving algo-

rithms are compared – see figure 3. Each problem was solved

1000 time to accumulate measurable time.

Related Works and Conclusions

This work is significantly influenced by (Ryan, 2007). The
author presents a solving method for the multi-robot path
planning based on a decomposition of the environment into
simpler sub-graphs that are easier to tackle. This approach
has much in common with the approach presented above.
However, deep theoretical results gained for pebble motion
on graphs (sliding box puzzles) (Wilson, 1974; Kornhauser
et al., 1984; Ratner & Warmuth, 1986) are ignored in
(Ryan, 2007), though they are so closely related to multi-
robot path planning.

The major aim of this paper is to fill in the gap between
theory and practical solving of problems of pebble motion
on graph and multi-robot path planning. We have to em-
phasize that this paper intensively builds on existing works
while we improve aspects regarding the optimality of solu-
tions.

0

20000

40000

60000

80000

13 14 15 17 18 19 19 19 22 23 26 28 29 30 32 32 36 37 39 41 46

Solution Length - MIT
BIBOX MIT

MIT

MIT THETA 2

MIT THETA 3

0

2000

4000

6000

8000

13 14 15 17 18 19 19 19 22 23 26 28 29 30 32 32 36 37 39 41 46

Solution Length - BIBOX
BIBOX MIT

BIBOX THETA 2

BIBOX THETA 3

0

50

100

150

13 14 15 16 17 18 19 19 22 23 26 27 29 30 32 32 37 37 39 41 46

Solving Time - MIT BIBOX MIT

MIT THETA 2

MIT THETA 3

MIT

0

10

20

30

13 14 15 16 17 18 19 19 22 23 26 27 29 30 32 32 37 37 39 41 46

Solving Time - BIBOX BIBOX MIT

BIBOX THETA 2

BIBOX THETA 3

|V|

N
u

m
b

e
r

o
f

s
te

p
s
 =

 ζζ ζζ

N
u

m
b

e
r

o
f

s
te

p
s
 =

 ζζ ζζ

|V|

T
im

e
 (

s
e
c
o

n
d

s
)

T
im

e
 (

s
e
c
o

n
d

s
)

|V|

|V|

Let us further comment the related works. Graph theoret-
ical properties crucial for tackling the problem were identi-
fied in (Wilson, 1974; Kornhauser et al., 1984). The solv-
ing methods for transposition and 3-cycle rotation cases
ware developed in (Surynek, 2009b). The less general
version of the BIBOX algorithm is presented in (Surynek,
2009a). This version of the BIBOX algorithm requires at
least two unoccupied vertices in a bi-connected graph.

 A comparison with domain-independent planners and
scaling evaluation is also given in (Surynek, 2009b) (LPG-
td and SGPlan were tested; only extremely small pebble
motion/multi-robot problems are solvable by domain-
independent planners). These results render the domain-
independent approach to be uncompetitive.

Another interesting approach for solving the problem of
multi-robot path planning is represented by works (Silver,
2005) and (Wang & Botea, 2009). They both build upon
the standard A* search (Russell & Norvig, 2003) while the
efficiency is increased by searching a path to the destina-
tion for each robot independently if it is possible. Clearly,
this approach becomes problematic on problems with few
unoccupied vertices where it is impossible to find a path
for a robot independently on other robots. In contrast to
this, our approach works even on extremely crowded
graphs and does not use any search (which may consume
exponential time).

Our work can be summarized as follows. A successful
application of optimal pre-calculated macros for solving
problems of pebble motion and multi-robot path planning
with bi-connected environments has been presented in this
paper. One existing algorithm (MIT) was improved by the
integration of macros. Another algorithm (BIBOX) was
improved and generalized – the new variant is called
BIBOX-θθθθ - so that is becomes one of the best algorithms
(it is better than existing domain-dependent algorithms as
well as domain independent planners) for solving the stu-
died class of problem in terms of runtime and the quality of
solutions. For future work we plan to develop techniques
for post-processing solutions produced by the presented
algorithms. The post-processing will be aimed on shorten-
ing solutions and increasing parallelism.

Acknowledgement

This work is supported by the Czech Science Foundation
under the contracts number 201/07/0205, 201/09/P318 and
by the Ministry of Education, Youth and Sports, Czech
Republic under the contract number MSM 0021620838.
We would like thank anonymous reviewer for valuable
suggestions for future work.

References

Culberson, J. C., Schaeffer, J., 1996. Searching with Pat-
tern Databases. Proceedings of the Canadian Conference
on AI 1996, Canada, LNCS 1081, pp. 402-416, Springer.

Kornhauser, D., Miller, G. L., Spirakis, P. G., 1984. Coor-
dinating Pebble Motion on Graphs, the Diameter of Per-
mutation Groups, and Applications. Proceedings of the
25th Annual Symposium on Foundations of Computer
Science (FOCS 1984), pp. 241-250, IEEE Press.

Ratner, D., Warmuth, M. K., 1986. Finding a Shortest
Solution for the �×� Extension of the 15-PUZZLE Is In-
tractable. Proceedings of the 5th National Conference on
Artificial Intelligence (AAAI 1986), pp. 168-172, Morgan
Kaufmann Publishers.

Russell, S., Norvig P., 2003. Artificial Intelligence: A
Modern Approach (second edition). Prentice Hall.

Ryan, M. R. K., 2007. Graph Decomposition for Efficient
Multi-Robot Path Planning. Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2007), Hyderabad, India, pp. 2003-2008, IJCAI Confe-
rence, 2007.

Silver, D., 2005. Cooperative Pathfinding. Proceedings of
the 1st Artificial Intelligence and Interactive Digital Enter-
tainment Conference (AIIDE 2005), CA, USA, pp. 117-
122, AAAI Press.

Surynek, P., 2009a. A �ovel Approach to Path Planning
for Multiple Robots in Bi-connected Graphs. Proceedings
of the 2009 IEEE International Conference on Robotics
and Automation (ICRA 2009), Kobe, Japan, pp. 3613-
3619, IEEE Press.

Surynek, P., 2009b. Towards Shorter Solutions for Prob-
lems of Path Planning for Multiple Robots in θ-like Envi-
ronments. Proceedings of the 22nd International FLAIRS
Conference (FLAIRS 2009), FL, USA, pp. 207-212, AAAI
Press.

Surynek, P., 2009c. Making Solutions of Multi-robot Path
Planning Problems Shorter Using Weak Transpositions
and Critical Path Parallelism. Proceedings of the 2009
International Symposium on Combinatorial Search (SoCS
2009), CA, USA, USC, http://www.search-conference.org/
index.php/Main/SOCS09 (July 2009).

Tarjan, R. E., 1972. Depth-First Search and Linear Graph
Algorithms. SIAM Journal on Computing, Volume 1 (2),
pp. 146-160, Society for Industrial and Applied Mathemat-
ics.

Wang, K. C., Botea, A., 2009. Tractable Multi-Agent Path
Planning on Grid Maps. Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2009),
CA, USA, pp. 1870-1875, IJCAI Conference.

West, D. B. 2000. Introduction to Graph Theory, second
edition. Prentice-Hall.

Wilson, R. M., 1974. Graph Puzzles, Homotopy, and the
Alternating Group. Journal of Combinatorial Theory, Ser.
B 16, pp. 86-96, Elsevier.

