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Abstract

Learning is an important aspect of human intelligence. People
learn from various aspects of their experience over time. We
present an episodic infrastructure for learning in the context
of a cognitive architecture, ICARUS. After a review of this ar-
chitecture, we formally define the architectural extensions for
episodic capabilities. We then demonstrate the extended sys-
tem’s capability to learn planning operators using the episodic
traces from two Minecraft-like scenarios.

1 Introduction

Learning is of central importance to intelligent agents. From
the beginning of artificial intelligence back in 1950’s, re-
searchers have recognized that the learning process is inti-
mately tied to the nature of intelligence (Simon 1980). In
order to adapt to dynamic environments, intelligent agents
must possess mechanisms that allow them to acquire a broad
repertoire of relevant behaviors. For this reason, there has
been a significant amount of research on learning domain
models in a variety of manners. But we rarely find any theo-
ries that provide a complete account of how experiences are
gathered and how knowledge is derived from such experi-
ences over time.

Our research aims to provide an infrastructure for orga-
nizing and processing collected experience, which then es-
tablishes a foundation for an experiential learning in intel-
ligent agents. We model human episodic capabilities (Tulv-
ing 1983) in the context of a cognitive architecture, ICARUS
(Langley and Choi 2006), and attempt to bridge these ca-
pabilities with other learning modalities. In this paper, we
begin our study with the experiential learning of planning
operators including action and event models. This will pro-
duce agents capable of learning throughout their lives to
develop low-level expertise and adapt to dynamic environ-
ments. Such agents will also be able to recover from incor-
rect or incomplete knowledge over time. Additionally, be-
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cause ICARUS learns structured models, agents retain the
advantage of explainability.

Our work is motivated by situated agents that learn in
changing, dynamic environments. Certainly, robots are one
kind of such agent, but this paper focuses on a simulated
domain described in the next section. After a description
of this illustrative domain, we review the ICARUS architec-
ture by providing necessary definitions that contextualize the
episodic extensions we describe next. Then we present some
preliminary results in the domain. Finally, we will discuss
related work before we conclude.

2 Illustrative Domain

To motivate our research on episodic agents and evaluate
our system’s capabilities, we use a simplified version of a
popular open-world game, Minecraft (Johnson et al. 2016),
where players attempt to survive in a continuous, dynamic
world by collecting resources, forging tools, building struc-
tures, and fighting enemies. Consider a novice agent learn-
ing from an expert player who starts at the lower left corner
of a room. There are resources scattered around the room
and a craft desk nearby the player. The player should gather
the resources to make a sword for protection, but there are
zombies in this room that guard the resources. The player
must be careful because she will lose health if a zombie at-
tacks her.

The expert player starts by selecting a resource and mov-
ing north toward it. Once she is on the same row as the re-
source, the player moves east toward it until she is on the
same column. Now the player is standing by the resource
and picks up the resource to hold it. But there was a zom-
bie in the same location, so the player’s health was reduced
while the player was standing there. Then she moves south
and then west to the craft desk. When the player arrives
there, she puts down the resource on the desk. After re-
peating this process several times, the expert player would
have gathered all the resources necessary to build a sword
and achieve its mission by crafting one. The novice observer
stores in its mind all the situations the expert has encoun-
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Figure 1: A 5x5 notional plot of Minicraft.

tered, and learns action and event models from them that it
will be able to use to play the game.

We began our work by creating a grid world, Minicraft,
that is inspired by the original Minecraft. Although simpli-
fied, this game captures enough dynamism to demonstrate
the learning ability of our system. Figure 1 shows a notional
view of Minicraft, which consists of four entities: resource,
craftdesk, zombie, and the agent. The only entities with dy-
namic properties are the zombie and the agent. The agent
begins at the star and moves one grid at a time while picking
up or dropping resources and crafting items. Zombies, once
placed on the map, are stationary, but provide dynamism to
the world by decreasing the agent’s health by one for every
moment that the agent resides in the same grid as the zom-
bie. All world dynamics, such as the effects of movement
and action are unknown to the observer.

3 ICARUS Review

As a cognitive architecture, ICARUS provides a framework
for modeling human cognition and programming intelligent
agents. The architecture makes commitments to its repre-
sentation of knowledge and structures, the memories that
store these contents, and the processes that work over them.
ICARUS shares some of these commitments with other archi-
tectures like Soar (Laird 2012) and ACT-R (Anderson and
Lebiere 1998), but it also has distinct characteristics like the
architectural commitment to hierarchical knowledge struc-
tures, teleoreactive execution, and goal reasoning capabili-
ties (Choi 2011). Section 3.1 describes the key knowledge
and memory structures of ICARUS, while Section 3.2 out-
lines how processes operate on these memories as part of a
cognitive cycle.

ICARUS learns in the context of propositional states and
action event models. Given a finite set of first order propo-
sitions P we define a propositional language L(P ), and a
finite set of labeled procedures, called actions, A such that
L(P ) ∩ A = ∅.

�������	

�������
�	�

����	�����	

�������
�	�

��������
�	�

��	��������
����	

���	��
���

������	�����
���� ���	����

�����!��	����

������"������

��	������

�������	

�������������
�	�

��������	���

��#������
�	���

Figure 2: ICARUS cycle prior to episodic memory extension.

3.1 Representation and Memories

ICARUS distinguishes two main types of knowledge: con-
cepts and skills which represent semantic and procedu-
ral knowledge, respectively. Both have parameterized (i.e.,
lifted) variants that are grounded when variables are as-
signed to objects. Figure 2 shows the long-term and short-
term memories of ICARUS, in which concepts and skills are
stored. Paramaterized concept and skill definitions are stored
in conceptual and procedural long-term memories, respec-
tively. Instances of these definitions are stored in their re-
spective conceptual or procedural short-term memories.

Concepts describe certain aspects of a situation in the en-
vironment. They resemble horn clauses (Horn 1951), com-
plete with a predicate as the head, perceptual matching con-
ditions, tests against matched variables, and references to
any sub-relations.

Definition 1 (Concepts (C)) A primitive concept is defined
over P as ci = 〈λ, ε〉 where λ ∈ P known as the concept
head, ε denoting elements to pattern match in the world state
S, where S is a subset of P . Let Cp be the set of primitive
concepts. A non-primitive concept is defined over P ∪ Cp

as cj = 〈λ, ε, γ〉 where γ denotes cj’s subrelations. We can
further define non-primitive concepts over P ∪ Cp ∪ Cn,
where Cn is the set of non-primitive concepts.

Figure 3 shows example concepts for Minicraft. The first,
north-of, is a primitive concept that describes the situ-
ation where a zombie is to the north of the agent, using
perceptual matching and test conditions for self and zom-
bie. The second, on-horizontal-axis, depicts a non-
primitive concept where a zombie is on the same horizontal
line as the agent. The third, standing-by, describes an
even more abstract non-primitive concept where the zombie
is standing right next to the agent.

Skills describe procedures to achieve certain concept in-
stances in the environment. These are hierarchical versions
of STRIPS operators (Fikes and Nilsson 1971) with a named
head, perceptual matching conditions, preconditions that
need to be true to execute, direct actions to perform in the
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((north-of ?o1 ?self)

:elements ((self ?self y ?y) (zombie ?o1 y ?y1))

:tests ((> ?y1 ?y)))

((on-horizontal-axis ?o1 ?self)

:elements ((self ?self) (zombie ?o1))

:conditions ((not (north-of ?o1 ?self))

(not (south-of ?o1 ?self))))

((standing-by ?self ?o1)

:elements ((self ?self) (zombie ?o1))

:conditions ((on-horizontal-axis ?o1 ?self)

(on-vertical-axis ?o1 ?self)))

Figure 3: Three ICARUS concepts in the Minicraft domain.

((gather-resource ?o1)

:elements ((self ?self) (resource ?o1))

:conditions ((not (carrying ?any))

(standing-by ?self ?o1))

:effects ((carrying ?o1))

:actions ((*pick-up-resource ?o1)))

((go-to ?o1)

:elements ((self ?self))

:conditions ((north-of ?o1 ?self))

:subskills ((go-up-to ?o1))

:effects ((standing-by ?self ?o1)))

((gather-resource ?o1)

:elements ((self ?self) (resource ?o1))

:conditions ((not (carrying ?any)))

:subskills ((go-to ?o1) (gather-resource ?o1))

:effects ((carrying ?o1)))

Figure 4: Three ICARUS skills in the Minicraft domain.

world or any sub-skills, and the intended effects of the exe-
cution.

Definition 2 (Skills (K)) Given the finite set of actions A,
a skill defined over C ∪ S where C is the set of con-
cepts and S is a propositional state, is a primitive skill if
ki = 〈ε, γ, α, σ, η〉, where pattern match conditions ε ⊆ S,
preconditions γ ⊆ {λ|〈λ, ·〉 ∈ C}, actions α ⊆ A, sub-
skills σ = ∅, and effects η ⊆ {λ|〈λ, ·〉 ∈ C}. Let Kp be the
set of primitive skills.

A skill defined over C ∪ S ∪Kp is a non-primitive skill if
kj = 〈ε, γ, α, σ, η〉, where ε ⊆ S, γ ⊆ {λ|〈λ, ·〉 ∈ C}, α =
∅, σ ⊆ Kh, and η ⊆ {λ|〈λ, ·〉 ∈ C}. Kh is the set of non-
primitive skills.

Figure 4 shows example skills for Minicraft. The first,
gather-resource, is a primitive skill that describes a
procedure to collect a resource that is executable when the
agent is not carrying anything and is standing next to the re-
source. This skill uses a direct action to pick up the resource
and its intended effect is carrying the resource. The bottom
two are non-primitive skills that use sub-skills: go-to uses
a sub-skill go-up-to to achieve the goal of standing near
the object, while gather-resource uses the two sub-
skills above it to collect a resource.

3.2 The ICARUS Cognitive Cycle

The ICARUS architecture operates in a cognitive cycle re-
peating two steps: conceptual inference and skill execution.
Conceptual inference is the process of creating concept in-
stances (i.e., beliefs). At the beginning of each cycle, the
system receives sensory input from the environment as a
list of objects with their attribute-value pairs; this can be
thought of as the world state and is represented as propo-
sitions. Based on this information, the architecture infers the
concept instances (i.e., beliefs) that are true in the current
state by matching its concept definitions to perceived objects
and other concept instances in a bottom-up fashion.

In summary, Figure 2 shows concept definitions housed
in the conceptual long-term memory are used to infer the
beliefs of the system from the world state and are stored as
concept instances in the conceptual short-term memory.

Definition 3 (Beliefs (B)) Let C be the set of concepts.
∀c = 〈λ, ε, γ, τ〉 ∈ C, ∃ belief b = 〈λ, ε, γ, τ, β〉 where
β represents bindings that ground b on the perceptual el-
ements, ε. Let B be the set of all possible beliefs, and let
B = 2B be the set of all belief states. A belief state s ∈ B.

Skill execution proceeds after conceptual inference
whereby ICARUS finds all the relevant skill definitions for
the current goal(s) that are executable based on the current
beliefs. ICARUS chooses a skill and sets it as its intention
and executes it in the world.

Definition 4 (Intentions (ι)) Let K be the set of skills.
∀k = 〈ε, γ, α, σ, η〉 ∈ K, there exists intention ι =
〈ε, γ, α, σ, η, β〉 where β represents bindings that ground ι
in the belief state.

Each cycle may introduce changes in the environment,
which may modify the sensory input for the next cycle, re-
sulting in new beliefs and intentions. The architecture iter-
ates in this manner until all of its goals are achieved or its
operations are terminated for any other reasons.

4 Constructing Episodes

We now shift our attention to extending ICARUS with an
episodic memory. In particular, we highlight the core data
structures of ICARUS’s Episodic Memory (Section 4.1), how
it encodes episodes within that memory through a process
called event segmentation (Section 4.2), and how it general-
izes episodes over time (Section 4.3).

4.1 The Episodic Memory

The episodic memory in ICARUS is a long-term, cue-based
memory that the agent uses to deliberately encode and
retrieve episodes. The architecture organizes its episodic
memory E = 〈ρ,F,T〉 in a compound structure composed
of an episodic beliefs-action cache ρ, a concept frequency
forest F, and the episodic generalization tree T.

Figure 5 shows how information is processed within the
episodic memory and is discussed through this section. ρ
acts as a storage for the agent’s unprocessed history. We as-
sume that the agent has sufficient memory to store the com-
plete beliefs-action sequence. F records counts for the num-
ber of times concepts and their instantiations as beliefs have
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occurred during the execution of the agent. T is the main
data structure that organizes and stores episodes; the con-
tents of T are used in the process of learning new skills. The
elements ρ and F (Definitions 5 and 6), discussed next, fa-
cilitate the workings of the event segmentation and episodic
encoding (Section 4.2). Generalization with T is discussed
in Section 4.3.

Since episodes are built on top of sequences of beliefs,
we introduce first the beliefs-action cache, which stores the
moment-by-moment changes in belief, inferred from the
world state, as well as the actions that were taken based on
those beliefs.

Definition 5 (Beliefs-action cache (ρ)) The beliefs-action
cache ρ, is an ordered sequence of belief-action pairs. This
cache stores a complete, detailed history of what the agent
observed. Figure 5 shows that the contents of the belief mem-
ory are inputs to the beliefs-action cache.

Once these traces are collected, they must be processed
for interesting events, which are tracked in the concept fre-
quency forest.

Definition 6 (Concept frequency forest (F)) Let X be a
set of location predicates, and let Y = {x.first|x ∈ S}
be the set of object types. A concept frequency tree is a tree
whose the root μ is a location predicate from X . The chil-
dren of μ are all the concepts the agent has observed in that
location. For each child concept, c, of μ, ∃ a set of types from
Y , to specify concept disjunctions. Under each disjunction,
j, there exists concept instances. Each node in the tree has
a count field, denoting the number of times this node has
been observed. A concept frequency forest is a collection of
concept frequency trees.

ICARUS uses F to model expectation violation. The agent
sets two thresholds: one for positive expectations and one
for negated expectations. Any belief with a conditional
probability, given the location, is greater than the positive
threshold is said to be expected. Any belief with a condi-
tional probability, given the location, is less than the negated
threshold is not expected to be in the state. A belief that vio-
lates an expectation is a significant belief, which prompt the
system to create an episode. This is a primitive method for
novelty detection that only uses spatial information, but we
can further extend the novelty detection method to include
the temporal domain as well.

The episode structure defined in Definition 7 represents
the agent’s experiences in the architecture. Once they are
stored in memory, episodes are processed to abstract general
rules that allow the agent to predict environmental dynamics.

Definition 7 (Episode (ε)) An episode is a tuple
〈Bs, Be,Σ, ψ〉, where Bs is the start state of the episode,
Be is the end state of the episode, Σ is the set of significant
beliefs in Be, and ψ is a count for the number of times the
episode has occurred.

During episodic encoding, the start and final states are
taken from the ρ (i.e., the beliefs-action cache). In the
current implementation, Bs and Be are consecutive belief
states, but our work does not require this. Our rationale is

Episodic 
Generalization 

Tree ( )

Event 
Segmentation

Beliefs-action 
Sequence 
Cache ( )

Belief 
Monitoring

Skill Learning

Frequency 
Forrest ( )

Belief Memory 
(STM)

Skill Long-term 
Memory

Generalization

Episodic 
Memory

Figure 5: Block diagram depicting episodic memory compo-
nents and information flow starting from the belief memory.

psychologically inspired. When humans perform low-level
actions, kicking a soccer ball for instance, humans know that
the effect is not always observed in their next cognitive cy-
cle. The ball travels in time before it reaches the goal. This
dynamic is readily understood by most humans. Modeling
actions with temporally delayed effects is part of our future
work.

4.2 Episodic Encoding

Episodic Encoding in ICARUS is a two-step process. First,
ICARUS operates on the ρ to returns a new episode ε. This
is referred to as “Event Segmentation” in Figure 5. Once the
episode exists, the second process places it into the episodic
generalization tree. Algorithm 1 shows that encoding is trig-
gered by the presence of one or more significant beliefs in
belief state.

Algorithm 2 traces how episodes are inserted into the
episodic generalization tree. Suppose the generalization tree
contains several episodes. Γ is a list of sibling episodes un-
der parent � ∈ T If ∀εi ∈ Γ, (εi, ε) /∈ E then (�, ε) ∈ E.
That is ε becomes a child of �. A new episode has success-
fully been encoded into the episodic memory. If ∃εj � εj =
ε, then the counter for εj increments by one and ε is not
inserted.

On every cycle, ICARUS records the belief state and exe-
cuted actions into the episodic cache and updates F. When
the agent infers one or more significant beliefs, it encodes

Algorithm 1 CREATEEPISODE(ρ, loc, Bc)
1: ρ is beliefs-action cache
2: loc is current location
3: Bc is current belief state
4: Bprev ← last state in ρ
5: ρ ← ρ.add(Bc, a)
6: sigs ← GETSIGNIFICANTBELIEFS(Bc, loc)
7: if not NULL(sigs) then
8: ε ← MAKEEPISODE(sigs, Bc, Bprev)
9: T ← INSERT(ε, T)
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Algorithm 2 INSERTEPISODE(ε,T)
1: queue ← ∅
2: temp ← root of T
3: match ← ∅
4: p ← ∅
5: while not NULL(temp) do
6: match ← STRUCTURALEQ?(temp, ε)
7: if match is exact match then
8: temp.count ← temp.count+ 1
9: Try to learn from temp if count high enough

10: BREAK
11: else if match is bc of unification then
12: temp.count ← temp.count+ 1
13: queue ← ∅
14: queue ← temp’s children
15: Try to learn from temp if count high enough
16: p ← temp

17: temp ← queue.FIRST
18: queue ← queue.POP

19: if null(temp) and match not exact then
20: p ← p.ADDCHILD(ε)
21: T ← GENERALIZE(p, ε)

a new episode. The root node of the generalization tree is
the most general episode and is allowed to have an arbitrary
number of children. Under the root, episodes are grouped
according to structural similarity. Two episodes e1, e2 are
structurally similar if their significant beliefs unify. By
“unify” we mean that there must exist a binding set that
transforms the significant beliefs of e1 to those of e2 and
vise versa. This is a rigid generalization scheme that needs
more consideration in future work. Each child is a k-ary tree
where k ∈ N. Episodes become more specific at each de-
creasing level of the tree according to structural similarity.
At the leaf nodes exist fully instantiated episodes.

4.3 Episodic Generalization

ICARUS supports generalization of the episodic tree dur-
ing encoding of episode, εi. Definition 8 shows that an
episode hierarchy is induced by structural similarity. Two
sibling episodes εi, εj generalize iff ∃ episode εg such that
(εg, εi) ∈ E and (εg, εj) ∈ E, but (εi, εg) /∈ E and
(εj , εg) /∈ E. This means that εg unifies with its children,
εi, εj , but its children cannot unify with it because they con-
tain more specified bindings. If εg exists, ICARUS tests to
see if it is still more specific than the parent of εi. If so, then
εg’s parent becomes εi’s parent and εg’s children become
εi, εj . The count for a generalized episode is the summation
of the count of its children.

Definition 8 (Generalization tree (T)) An episodic gener-
alization tree is a tree (V, E) where V is a set of episodes,
and E is a set of edges. For any εi, εj ∈ V, (vi, vj) ∈ E if
they are structurally similar. An episode is said to be gener-
alized or partially instantiated if the bindings contain one or
more unbound variables.

The generalization tree naturally lends itself to the learn-

ing process as a result of generalization. For example, if per-
son x drops a glass on the ground and it breaks, and person
y drops a glass on the ground and it breaks as well, ICARUS
forms a generalized episode that implies if anyone drops a
glass on the ground, it will break. The ability to gain knowl-
edge in this way is central to general intelligence. As the tree
adds more episodes, they are sorted into increasingly sensi-
ble taxonomies. The resulting tree after insertion is ICARUS’
best estimate of the ideal generalization tree. This organi-
zational structure was inspired by the incremental concept
formation literature (Gennari, Langley, and Fisher 1989).
As episodes become more general, the skills ICARUS learns
from those episodes are equivalently general. So, general-
izing skills is performed within the episodic generalization
tree, not the skill learning algorithm.

5 Skill Learning using the Episodic Memory

In previous work, ICARUS supported learning by observing
problem solving traces that include goals, conditions, and
the skills used (Nejati 2011). The system relied on the expla-
nations it generated based on the given trace, and this pro-
cess required, at the very least, primitive skills in ICARUS’
memory. In the current work, we start with only the concepts
that are sufficient to describe situations in the world but the
agent does not have any skills in its knowledge base.

ICARUS starts as an observer and records the history
of belief states and ground actions in its episodic mem-
ory. As its experience accumulates, the agent will insert an
episode whose count surpasses a predefined threshold for
model learning. At that moment, the system uses the ac-
tions from Bs → Be as a search cue for collecting other
episodes where that ordering of actions took place. This
trace of episodes is then used in the rule induction algorithm,
MLEM2 (Grzymala-Busse and Rzasa 2010). Although we
are using MLEM2, this need not be the case. Any rule learn-
ing algorithm may be used as long as there is a transforma-
tion from ICARUS’s representation of experience to the rep-
resentation that the learning algorithm requires. After learn-
ing, the agent can seamlessly utilize the learned skills during
problem solving.

5.1 Learning Action and Event Models

In order to learn models of the world, ICARUS must first
retrieve experiences via a retrieval cue. The system gen-
erates an observation, as defined in Definition 9 for each
episode that matches the cue. For the case of model learn-
ing, the retrieval cue is some subset of actions ai from A.
As the episodes are examined, matches are collected into an
episodic trace of evidence related to ai.

Definition 9 (Observations (O)) Let o = 〈si, ai, sf 〉 be an
observation from ρ, the beliefs-action cache, where si, sf ∈
ς are respectively initial and final belief states, and ai ⊆ Λ
be the set of actions that transformed si to sf An episodic
trace, O is a collection of observations.

MLEM2 learns rules from data tables, therefore, once the
episodic trace is obtained it needs to be transform O into a
table. The x-axis for this table is an enumeration of all the
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Belief �b �b ∩ {1, 3, 4}
(holding sword1) {1,2,3,4,5} {1,3,4}
(holding nothing) {6} ∅
(holding food1) {7,8} ∅

(next-to ?zombie) {1,3,4,7} {1,3,4}
(next-to tree1) {5,2, 6,8} ∅
(health good) {1,2,3,4,5,6,7,8} {1,3,4}

Table 1: Sample attribute and decision blocks.

unique beliefs in O, and the y-axis numbers each observa-
tion in O. Each belief, b on the x-axis has an associated list
, blockb = {i|〈sj , aj , sk〉 ∈ O[i], b ∈ sj} of the observation
indices it appeared in. The last column of the data table is the
list of the effects, fx for each associated observation. Table 1
summarizes the data table in a way that clearly shows each
belief’s block list. For example, the middle column states for
the first row, that the (holding sword1) belief was present in
observations 1 through 5.

For each effect, f in fx, the algorithm computes a list,
blockfx = {i|〈sj , aj , sk〉 ∈ O[i], f ∈ sk} of observation
indices that it appeared in as well. MLEM2 tries to find, for
each effect, conditions whose associated blocks cover the
effect block. These coverings are what are the learned action
and event models.

In this example, assume ai = ((∗attack)), and fx =
{((zombie-dead ?zombie), {1, 3, 4}), ((wood wood1), {2})}.l

MLEM2 attempts to find local coverings of fx from the
list of belief conditions. MLEM2 tries the pair (b, blockb)
whose listing, blockb intersected with an uncovered effect
block0fx = {1, 3, 4} is the largest. If blockb ≤ block0fx,
then that condition becomes a rule that covers that effect. If
blockc � block0fx then other conditions need to be added to
cover it. Once a rule has been found that covers all the cases
of for an effect, the same process repeats for the uncovered
effects in fx. In the example, the system learns the following
rule: (next-to ?zombie) ∩ (holding sword) → (zombie-dead
?zombie).

In the ICARUS context, MLEM2 results are converted to
action and event models, which are primitive skills. The left
hand side of the rules become the preconditions, the right
hand side would be the effects of the skill. The action infor-
mation would capture what work needs to be done to realize
the effects.

6 Experimental Setup

The goal with this research was to create an agent that could
learn unknown domain dynamics from experience. Further-
more, we want a system that is flexible and continues learn-
ing over the course of its life to reflect the changes in the
world’s changing dynamics. We assume that the world is
fully observable, and that the agent has a vocabulary that
distinguishes belief states perfectly. Also, we assume effects
come immediately after actions, and that the environment is
not stochastic.

We tested on two scenarios. Each scenario has one ex-
pert with perfect concept and skill knowledge, and one ob-
server with full observability of the state, perfect concept

(achieve-bottom-horizontal-axis-and-more)

:conditions ((at minicraft) (north-of r1 me)

(north-of r3 me) (east-of r2 me)

(east-of r3 me) (east-of craftdesk1 me)

(north-of zombie2 me) (north-of zombie3 me)

(east-of zombie1 me) (east-of zombie2 me)

(good-health me) (on-ground r1)

(on-ground r2) (on-ground r3)

(on-vertical-axis r1 me)

(on-vertical-axis zombie3 me)

(on-horizontal-axis zombie1 me)

(on-horizontal-axis craftdesk1 me)

(on-horizontal-axis r2 me))

:actions ((*move-up))

:effects ((south-of ?r3 me) (south-of craftdesk1 me)

(south-of ?zombie3 me)

(bottom-of-horizontal ?zombie3)

(bottom-of-horizontal ?r3)

(bottom-of-horizontal craftdesk1))

(achieve-bottom-horizontal-axis-and-more)

:conditions ((on-horizontal-axis ?r3 me)

(on-horizontal-axis craftdesk1 me)

(on-horizontal-axis ?zombie3 me))

:actions ((*move-up))

:effects ((south-of ?r3 me) (south-of craftdesk1 me)

(south-of ?zombie3 me)

(bottom-of-horizontal ?zombie3)

(bottom-of-horizontal ?r3)

(bottom-of-horizontal craftdesk1))

Figure 6: Learned action models for the *move-up action
before (top) and after (bottom) generalization.

knowledge, but no skill knowledge (i.e., no knowledge of
the domain dynamics). We are primarily interested in what
action and event models the agent learns and know how they
change in response to new evidence. In the first scenario,
we place the expert at (1,1), and zombies and resources are
at the other three corners. At (5, 1) there exists a craftdesk.
The expert is tasked with collecting resources and placing
them on the craftdesk. For the case of the expert, this prob-
lem is easily solved, but for the novice, we are interested
in how well it learns the dynamics of the world. An exam-
ple of an event model would be knowing that being next to
a zombie reduces the agent’s health, and an example of an
action model would be learning about what happens to the
state when the agent moves.

The second scenario extends the first with the zombies
and resources have been randomly re-assigned to different
corners. This makes for two different, but structurally iden-
tical scenarios. By doing this, we ensure that the agent con-
structs episodes that will generalize with the other episodes
in its memory.

7 Results

We demonstrate that the agent is able to learn goal-directed,
specific or generalized action and event models from experi-
ence. Because of the episodic memory, ICARUS agents have
a mechanism for experiential learning which allows them
to learn world dynamics in the form of ICARUS skills. The
learned skills are continually revised according to evidence.

Figure 6 demonstrates how the action model for moving
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(achieve-fair-health-and-more)

:conditions ((good-health me) (on-ground r1)

(healthy-standing-by zombie3))

:actions (nil)

:effects ((fair-health me) (slouching-by me zombie3))

(achieve-fair-health-and-more)

:conditions ((good-health me)

(healthy-standing-by ?zombie2))

:actions (nil)

:effects ((fair-health me) (slouching-by me ?zombie2))

Figure 7: Action models for the event model before learning
(top) and after learning (bottom).

up changes with experience. The initial action model in Fig-
ure 6 (top) contains many irrelevant conditions, while the
final version (bottom) contains no irrelevant conditions; not
shown are intermediate versions. The same is true for the
event model the agent learns for achieving (fair health). Fig-
ure 7 shows that the irrelevant condition is removed from the
event model by the last refinement, where the event model
also successfully generalizes the initial version (top) to the
final version (bottom).

In our framework the system learns models based on the
agent’s interpretation of the ground truth. This is interesting
because it clarifies certain properties of inference. Specif-
ically, if an agent is lacking conceptual vocabulary to de-
scribe situations, its learned models will show evidence of
stochasm. In other words, there will be cases where the same
action occurred in identical belief states resulting in different
effects.

8 Related Work

Earlier research in action recognition and learning aims
to teach robots to recognize and perform human gestures
(Yang, Xu, and Chen 1997). In that work the researchers
used a discrete hidden Markov model to decode human
intentions, and to learn the motor actions that controlled
making gestures. Along this line, Liu et al. (2017) recently
developed a multi-task learning system that hierarchically
recognizes human actions. Also, another recent approach
attempted to learn control policies for continuous, non-
Gaussian stochastic domains (Wang et al. 2017). The work
describes a reinforcement learning system that learns an in-
complete policy for a discrete controller. Given the policy, a
robot executes the action for the nearest state to the current
one.

The main distinction from our work and these is that they
do not learn action models in the way that we have de-
fined them. The action models these systems learn are often
limited to scenario-specific transition functions, and control
policies. The semantic meaning of actions, however is still
unknown to the agent, so planning with the notion of explicit
goals is not possible. Moreover, when these system refer to
action models they typically refer to modeling the human
motor controls that produce gestures.

In addition to machine learning, researchers are also try-
ing to learn operator descriptions that can be used in per-

formance systems. As Langley and Simon point out, our
goal is to understand and characterize the invariants of in-
telligence. Building systems that help explain how novices
become experts in general is key to this endeavor. Wang et
al. (1994) created a system built on PRODIGY (Carbonell
et al. 1991) that incrementally learned planning operators
based on STRIPS (Fikes and Nilsson 1971) via observation
and practice. Expert demonstrations allowed the system to
estimate initial versions of the operators. The agent refined
its knowledge base by attempting to use learned operators
to solve problems. The system was able to learn subgoal or-
derings for the operators, but the system could not learn op-
erator decompositions, so operators were learned and stored
in a flat structure. Gil et al. (1994) discussed how imperfec-
tions in domain knowledge do not always lead to planning or
execution failures. They also presented a system that learns
to refine imperfect operators by experimenting. The experi-
mentation process can refine both operator pre and post con-
ditions.

Another system, ALPINE provided methods for induc-
ing abstraction hierarchies over operators (Knoblock 1990).
Given a set of low-level operators, the system could induce
abstraction hierarchies that reduced the search space.

Another interesting approach learned operators with as-
sociated numeric attributes to denote the utility of a partic-
ular operator (Garcı́a-Martı́nez and Borrajo 2000). In this
way the system favored more accurate operators. Walsh and
Littman (2008) addressed the problem of efficiently learn-
ing STRIPS-like operators via experience. They define their
own notion of an episode to be an initial state, s0 goal state,
and all state-action pairs following s0 until the problem is
solved or marked unsolvable. Their notion of episode, how-
ever, is not tied to a larger theory of episodic memory.

Lastly,Molineaux and Aha (2014) describe a surprise-
driven method for learning event models. Given a problem,
the system returned a plan of actions that would achieve
the goal as well as a sequence of expected state changes
caused by executing those actions. The system notices sur-
prises when discrepancies exist between actual and expected
state transitions. Discrepancies trigger an explanation mod-
ule, DISCOVERHISTORY to hypothesize the cause of the
discrepancies. When explanations fail, the system uses a
variant of FOIL to learn an action model that repairs bro-
ken explanations.

In our work we addressed the problem of model learning
from the vantage point of episodic memory for intelligent
agents. Other research has investigated episodic memory.
In the work most similar to ours, Nuxoll and Laird (2007)
extended the Soar architecture (Laird, Newell, and Rosen-
bloom 1987) with episodic memory. They present results for
action modeling in their work, but details about the learning
mechanism are left out. There are also significant theoreti-
cal differences between the episodic memory in ICARUS and
Soar. ICARUS has strong commitments to hierarchical or-
ganization of knowledge throughout the architecture, which
helps support our theory for incremental learning. Soar, al-
though it has had many successes, does not have such strict
commitments to hierarchy. In their architecture episodes are
stored in a flat container for experiences. Moreover, episodes
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in ICARUS have temporal components, meaning that they
contain a sequence of states, whereas Soar’s episodes do not
have any temporal dimension.

9 Conclusion

We presented a new extension to the ICARUS architecture
that allows agents to learn goal-directed planning operators
from episodic traces. Our results from the Minicraft do-
main showed that our theory incrementally learns skills in a
specific-to-general manner, and also refines skills based on
evidence. This evidence is collected from ICARUS episodic
memory, a dedicated facility for constructing, storing and
organizing experience.
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