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Abstract

General-purpose robots operating in a variety of environ-
ments, such as homes or hospitals, require a way to integrate
abstract knowledge that is generalizable across domains with
local, domain-specific observations. In this work, we exam-
ine different types and sources of data, with the goal of un-
derstanding how locally observed data and abstract knowl-
edge might be fused. We introduce the Situated Robot Knowl-
edge (SiRoK) framework that integrates probabilistic abstract
knowledge and semantic memory of the local environment.
In a series of robot and simulation experiments we examine
the tradeoffs in the reliability and generalization of both data
sources. Our robot experiments show that the variability of
object properties and locations in our knowledge base is in-
dicative of the time it takes to generalize a concept and its
validity in the real world. The results of our simulations back
that of our robot experiments, and give us insights into which
source of knowledge to use for 31 types of object classes that
exist in the real world.

Introduction

Robotics is undergoing a transition from the development of
specialized, single-task robots to general-purpose platforms
expected to operate in diverse and changing environments,
such as hospitals and homes. Operation in unconstrained hu-
man environments introduces many new challenges, one of
which is that of knowledge acquisition. On the one hand, the
diversity of target environments makes it impossible to pre-
code the robot with all the required knowledge (e.g., where
the towels are kept, that a particular bowl is made of metal),
requiring the robot to learn from observations on-site. On
the other, information often referred to as “common sense
knowledge”, can be transferred across domains (e.g., towels
are often found in bathrooms and closets, bowls are con-
tainers) (Speer and Havasi 2012). In this work, we examine
different types and sources of such data, to understand how

∗This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program under
Grant No. DGE-1650044. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Sci-
ence Foundation.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: High-level view of SiRok framework.

locally observed data and abstract knowledge can be fused
to enable a robot to most effectively reason about its world.

As a motivating example, consider a robot placed in a new
home and tasked with fetching a glass of water. One ap-
proach is for the robot to rely entirely on local observations,
and to exhaustively search the environment for a glass and
sink. A human visitor to the home, however, would instead
be likely to first find a kitchen, then begin to open cabinets
(and not drawers) in order to find the glass. This behavior
would be guided by semantic, domain-independent knowl-
edge gathered from prior experiences, and a similar capabil-
ity would enable robots to more effectively adapt to new en-
vironments. However, local knowledge must also be incor-
porated into this reasoning, allowing adaptation to domain-
specific patterns or the current state of the world, such as
when the glasses have already been set out on the table, or
in houses with unconventional item storage areas. In order
to support a robust deployment model, we must better un-
derstand the limits of both local and abstract data.

In this work, we consider two sources of knowledge: ab-
stract knowledge and local knowledge. We characterize ab-
stract knowledge as domain-independent information that
generalizes across many environments (e.g., food in typi-
cal homes can be found in the refrigerator in the kitchen).
Specifically, we use commonsense information from Con-
ceptNet (Speer and Havasi 2012) and WordNet (Miller
1995) to allow the robot to reason about novel objects and
environments. We characterize local knowledge as informa-
tion the robot has perceived in its current environment. This
includes information obtained from its sensors (e.g., cam-
era, laser, etc.), including object recognition, semantic lo-
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cations, and object properties. From these data sources we
generate two separate knowledge bases, the Abstract Knowl-
edge Base (AKB) and the Local Knowledge Base (LKB),
which the robot uses to reason about the world. Combined,
these components make up the Situated Robot Knowledge
(SiRoK) framework (Fig. 1).

Our work makes the following contributions. First, we in-
troduce a domain-independent framework for automatically
retrieving common-sense knowledge for a given environ-
ment. We use object labels, obtained from object recogni-
tion, to generate seed words, which are then used to query
existing semantic knowledge bases to construct a probabilis-
tic model representing object type, location, and property
data. Second, in a series of robot and simulation experiments
we examine in what situations the abstract and local knowl-
edge sources are most reliable for objects with both mutable
and immutable properties. Our results show that variabil-
ity is a key heuristic to take into account when evaluating
knowledge sources. In particular, as variability increases, we
should emphasize sources of general knowledge. For cases
with extreme levels of variability, a robot should rely on
direct observations or chance. Our simulations validate the
trends we see in our robot experiments, and extend our con-
clusions to 31 different classes of objects found in real-world
households.

Related Work
Numerous projects across the AI community have sought
to make use of commonsense and semantic knowledge.
Three large-scale commonsense knowledge networks used
across a wide range of applications are WordNet (Miller
1995), ConceptNet (Speer and Havasi 2012), and Research-
Cyc (Lenat 1995; Matuszek et al. 2006). WordNet consists
of a collection of synsets, which connect concepts hierarchi-
cally through the IsA relation. WordNet also distinguishes
between different senses of the same word and provides
glosses, or definitions, for each sense. While WordNet is
clean and hand-coded, it also lacks diversity in the types of
relations it contains. ConceptNet, on the other hand, contains
several dozen different relations, but it does not distinguish
between word senses and is largely crowdsourced, leading
to a large amount of noise. ResearchCyc uses an even larger
number of relations (currently around 17,000) to connect
concepts. For the purposes of this work, we choose to use
data from WordNet and ConceptNet to take advantage of
the complimentary benefits of each.

In other work, Zhu, et al. (Zhu, Fathi, and Fei-Fei 2014a)
perform affordance prediction on a set of images by using a
Markov Logic Network (MLN) (Richardson and Domingos
2006a) to represent affordance knowledge. This work also
does not deal with context and used hand-selected objects
and affordances in the network. In (Chen and Liu 2011),
contextual noise is addressed by disambiguating the con-
cepts in ConceptNet to enrich the WordNet senses with
more diverse knowledge for improved performance on word
sense disambiguation tasks. While disambiguating Concept-
Net helped provide context for each of its concepts, the re-
sulting knowledge base contained only abstract information.
In contrast to this approach, (Stoica and Hearst 2004) did

Figure 2: System architecture for the Situated Robot Knowl-
edge (SiRoK) framework. The pipeline starts with environ-
ment data that is used to populate the AKB and LKB

construct a situated knowledge hierarchy in a (nearly) auto-
mated way, however, the resulting model only included hy-
pernyms (the IsA relation).

Within robotics, the KnowRob (Tenorth and Beetz 2009)
and RoboBrain (Saxena et al. 2014) projects are most
closely related to our work. In KnowRob, the authors cre-
ate a knowledge network from a variety of encyclopedic
sources and represented the network using Prolog rules and
the Web Ontology Language. This network is then used to
repair robot task plans by filling in missing low-level de-
tails from high-level task descriptions. In RoboBrain, the au-
thors generate a multimodal knowledge network for robotics
using data collected automatically from the web. The re-
sulting network is abstract and does not account for the
domain-specific details relevant to the situational context of
the robot. The RoboEarth project focused on the creation
of a cloud repository of generalizable robot knowledge, in-
cluding object models and robot task descriptions, that could
be transferred across robot platforms and domains (Waibel
et al. 2011). While these works deal with both abstract and
situated knowledge, none of them investigate which knowl-
edge source to leverage when. Our efforts focus on under-
standing which knowledge source a robot should use given
some query (e.g. where is the plant) which may be part of a
higher-level task. We conclude that the variability of a given
piece of information impacts the reliability of obtaining it
from either local or abstract sources.

SiRoK System Architecture

The SiRoK framework is implemented as a system of in-
terconnected modules, which communicate using ROS. The
system has three main components (Fig. 2): AKB, LKB ,
and Data Source Selection, each of which contains a series
of subsystems that aggregate and process data. At a high-
level, the pipeline begins by performing object detection,
where objects in the environment are assigned an object
class labels (e.g., cups, bowls, etc.). These generated class
names become seed words that are used to extract informa-
tion from online commonsense networks to build an AKB.
These object class labels are also used during grounding,
where specific object information is stored into the LKB. In
Data Source Selection, the robot uses specific queries to ask
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Figure 3: Classes and object data in the AKB and LKB

Figure 4: An example of abstract knowledge represented us-
ing a Bayesian Logic Network (BLN)

for information from AKB and LKB and fuses the results to
respond to the queries. In the remainder of this section, we
describe each subsystem in detail and the full system dia-
gram can be found in Fig. 2. The colors of each component
in Fig. 2 match the high-level view in Fig. 1.

Object Detection

For object detection, we used the open source real-time
object detection system YOLOv2 (Redmon et al. 2016).
YOLOv2 uses a convolutional neural network and computes
the location and classification of each object in an image in
a single pass. It does this by dividing the image into cells,
calculating an objectness score and then object classifica-
tion probabilities over the individual cells, it then using an-
chor boxes to predict the object bounding boxes. We tested
YOLOv2 on PASCAL VOC2012, achieving a mAP (mean
average precision) score of 73.4. For our robot experiments,
we trained YOLOv2 on the subset of COCO (Lin et al. 2014)
object classes which are specific to the home environment
(Fig. 3). Each time the system recognizes the object, the ob-
ject label, bounding box of the object, and raw rectangle seg-
ment of the object is sent to the LKB. The object labels are
also passed to the AKB.

Abstract Knowledge Base

We represent the robot’s AKB as a Bayesian Logic Network
(BLN) (Jain, Waldherr, and Beetz 2009), a directed statisti-
cal relational model in which the variables under consider-
ation are represented as first-order terms or predicates with
arguments. BLNs allow logical constraints, represented as
first-order logic rules, to be imposed on the network. Prior
work in computer vision has utilized Markov Logic Net-
works (Richardson and Domingos 2006b), a representation
that unifies Markov Random Fields and first-order logic, for
modeling object attributes and affordances (Zhu, Fathi, and
Fei-Fei 2014b). However, parameter learning in MLNs is an
ill-posed problem (Jain, Kirchlechner, and Beetz 2007) and
approximate inference is expensive even for simple queries.

In contrast, BLNs are easy to train, more efficient and have
scaled better to our application. Fig. 4 shows a small ex-
ample BLN, which, once constructed, can be used to per-
form inference using likelihood weighting (Fung and Chang
2013) to answer queries such as AtLocation(Objecti, x) or
HasProperty(Objecti, x).

To construct the BLN, we leverage information from two
online sources of semantic knowledge, WordNet (Miller
1995) and ConceptNet (Speer and Havasi 2012). Word-
Net is a low-noise hand-crafted collection of sets of cogni-
tive synonyms (synsets), each expressing a distinct concept
(e.g., spoon) and related to other concepts through hyper-
nym (the IsA relation, e.g., IsA(spoon, utensil)). Concept-
Net is an auto-generated commonsense knowledge bank; it
does not differentiate between word senses but groups all
within a single concept node related to others through mul-
tiple possible relations. For example, for the object mouse,
ConceptNet returns AtLocation(mouse,office) and HasProp-
erty(mouse, organic), highlighting the need to perform sense
disambiguation to correctly parse this data.

Given seed words obtained from object recognition labels,
we first perform sense disambiguation using the technique in
(Tsatsaronis, Varlamis, and Vazirgiannis 2008), by finding
the sense of each word that maximizes the overall similarity
between the seed words (leveraging the fact that the words
come from the same context). We then query WordNet and
ConceptNet for semantic data related to each disambiguated
word. Importantly, the seeds words not only provide a start-
ing point for data retrieval, but together act as context for the
robot’s specific environment. Currently, we retrieve data for
three relations, which we selected due to their usefulness in
robot task execution.
• IsA: determines the relationship between an object and its

hypernym (e.g., IsA(bowl, container)), allowing the robot
to reason over object categories.

• AtLocation: determines the relationship between an object
and locations in the world. (e.g., AtLocation(bowl, sink),
allowing the robot to query likely object locations.

• HasProperty: determines the relationship between an ob-
ject and properties such as materials, shape, and colors
(e.g., HasProperty(bowl, ceramic), HasProperty(bowl,
red), aiding in recognition and allowing the robot to rea-
son about possible object uses (e.g. metal objects should
not be placed in the microwave).
For each relation, we calculate a likelihood based on a

weighted combination of the relation score from Concept-
Net and the Explicit Semantic Analysis relatedness measure
(Gabrilovich and Markovitch 2007) between the two con-
cepts in the relation. This likelihood provides an initial es-
timate for the real-world probability of a given relationship
and enables us to generate training evidence for BLN based
on the distribution. Relations that cannot be sampled directly
are inferred logically using transitive prolog rules. For addi-
tional details, see (Garrison and Chernova 2016).

Local Knowledge Base

LKB Data Structure We represent the robot’s local envi-
ronment through a collection of object instances, forming a
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Figure 5: Topological map.

memory of encountered items, and their locations and prop-
erties. For o ∈ O, each object class out of the set of objects
known to the robot (listed in Fig. 3), we store i instances of
that object within the LKB, where an instance is defined as
a unique object.

The LKB is implemented using PyTables and HDF5; each
object class o is stored as a database, with a table gener-
ated for each object instance. For each instance, we currently
store the object label, previously seen locations (pose and
semantic label), image region corresponding to the bound-
ing box from object recognition, visual information (RGB-
D values), and all properties known about the instance (e.g,
color, material). The resulting representation provides a scal-
able memory system that allows for efficient retrieval of all
of its recent memories of instances.

Grounding In addition to using object recognition for ob-
ject class labels (e.g., bottle), the robot must distinguish dif-
ferent instances of the same class (e.g., red bottle vs yellow
bottle). The grounding component of SiRoK uses features
distinct to instances of an object class to distinguish among
multiple instances. This form of grounding, from here on
referred to as instance grounding, was implemented using
a K-Nearest Neighbors (KNN) classifier with a threshold
distance to accommodate new instances of a class. Our im-
plementation relies on color properties, extracted from the
bounding box region of the image using the GrabCut algo-
rithm (Rother, Kolmogorov, and Blake 2004) and uses KNN
to determine whether an object is a new instance. Ground-
ing enables the robot to perform color-based differentiation
of objects, which we leverage in our study. In future work,
we will expand instance grounding to incorporate spatial and
temporal information about objects, as well as a wider vari-
ety of features.

Semantic Location In order to effectively generalize lo-
cal information and relate it to abstract knowledge, we re-
quire a method for converting the robot’s world coordinates
to semantic location labels (e.g., kitchen counter). To pro-
vide a semantic location for an object, we utilize a hybrid
map (Buschka and Saffiotti 2004), which links a topological
map, consisting of a tree graph representing human domain
knowledge, with a metric map of spatial locations in the en-
vironment. Fig. 5 and Fig. 6 show the topological and metric
maps used in this work. The links between the topological
map and metric map are expressed directly in the topologi-
cal map nodes; association of each node with a volume in the
metric map. This map structure enables the robot to obtain
a semantic label for any 3D point that is hierarchical (e.g.,
object o is in a drawer in the kitchen in the apartment).

Property Extraction As discussed above, SiRoK enables
the robot to reason about a range of object properties, in-

Figure 6: Metric map with an overlay of the spatial volumes
associated with nodes in the topological map.

cluding color, weight, material and shape. Through local ob-
servation, the robot is able to obtain some properties (e.g.,
color), while other important object characteristics (e.g., ma-
terial) are very difficult to determine for existing platforms.
Some complementary information, however, can often be
obtained from the AKB, which obtains property information
through ConceptNet. For each object, we assign a set of ob-
ject properties commonly learned and used by robots (Her-
mans, Rehg, and Bobick 2011; Sun, Bo, and Fox 2013;
Sinapov et al. 2014). These include color, shape, material,
and weight. The individual values that each object can take
on (e.g. blue, heavy, metal, etc.) can be found in Fig. 3.

While color is obtained using a simple color classifier,
we hand-label the shape and weight of the objects. With
the current state of the art we assume that these properties
can be obtained easily with good accuracy via existing ma-
chine learning algorithms and the use of pre-trained classi-
fiers (Chu, Fitzgerald, and Thomaz 2016; Sun, Bo, and Fox
2013; Sinapov et al. 2014). Future work will include explo-
ration of the objects using the robot’s arm and visual infor-
mation from the RGB-D camera to learn the object proper-
ties. However, material still remains to be one of the harder
properties to be learned. In this work, we can leverage a hu-
man in the environment to extract the material properties of
the objects.

In its existing form, the BLN contains far too many prop-
erty edges to simply verify each one with the human. Thus
we present an algorithm, which takes the existing BLN gen-
erated from ConceptNet and WordNet, and actively selects
a subset of property relations to verify with the human. This
results in a pruned representation that is consistent with the
specific objects in the current environment.

We first modify the BLN to include inter-property edges.
For all properties in the BLN, we add an edge if a relation
exists between them in ConceptNet. We then generate three
tables. Tmaterial: all material properties present in our BLN
(i.e., holds a relation with Material in the ConceptNet). For
the next two tables, we use the association index in Concept-
Net, a measure between 0 to 1 of how related two words are.
TON
assoc: holds all the association indices between an ON and

every property belonging to that object (we ignore proper-
ties with index < 0.07).Tinterprop: Let PO be a set such that
each p ∈ PO is a property of O, this table holds the inter-
property association indices between any two properties in
PO.
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Next, we systematically pick the properties to query an
expert for verifications. For each object, we query the expert
about property, p ∈ PO with the highest association index
in TON

assoc. If it is verified true and exists in Tmaterial, then
all other material properties belonging to that object are as-
sumed to be false and are not queried. We can also assume
the predecessors of that property are true for ON (e.g., if
Aluminum is true, then Metal can be assumed true). For the
successors, we assume their hasProperty relations are true
(e.g., Metal true, then Opaque true), but need to query the
successors with an IsA (e.g., if Metal true, still need to ask
about Aluminum). If a node in this isA set is verified to be
true, the rest are assumed to be false.

Next, query with the a property with the minimum inter-
property association index with p, to ask the most different
question next. Repeat this process until all the properties are
verified as true/false. We construct an expert-verified BLN,
vBLN, with all verified true properties. For evaluation we
will look to compare this verified BLN with a ground truth
BLN with a dissimilarity index, Idissimilarity , defined as:

Uncommon edges between ground truth and vBLN
Total number of unique edges in ground truth and vBLN

Data Source Selection

SiRoK uses knowledge from the AKB and LKB to handle
object queries related either to (1) what the object is, (2)
where it is located, or (3) what properties it has. Within the
AKB, the BLN is queried for IsA, AtLocation, and HasProp-
erty information, and the results sorted by probability value.
The LKB answers AtLocation, and HasProperty queries by
using the stored outputs from semantic mapping and prop-
erty classification, returning a ranked list of the most fre-
quently encountered property. We note that, in general, loca-
tion and property information have different characteristics.
A specific object is likely to change location, possibly even
frequently, whereas most of the properties we consider, such
as color, are likely to change less often. Locations and prop-
erties also often generalize across instances (e.g., cups of the
same color or cups stored in the same cabinet), but this de-
pends on the variability of the object. In the next section, we
evaluate how our inference performs across these different
data types.

Robot Experiments

To evaluate the SiRoK system and examine the relative ap-
plicability of abstract knowledge and local knowledge, we
designed a series of experiments testing the robot’s ability
to predict object locations and properties. Our test environ-
ment resembles a simple apartment containing furniture and
different use areas, as seen in Fig. 6. For all experiments, we
use the robot platform, Prentice (Fig. 1). Prentice is an omni-
directional mobile robot and has a horizontally mounted li-
dar for navigation and a Microsoft Kinect2 RGB-D camera
mounted on a pan/tilt unit for visual sensing.1

1Note that we do not evaluate IsA queries on the robot due to
the highly abstract nature of the data. IsA results are reported in the
simulation section.

Building the Knowledge Bases

We populate an AKB by using the 31 possible class labels
shown in Fig, 3 to seed a BLN using ConceptNet and Word-
Net. As described in SiRoK System Architecture, these class
labels come from the COCO image dataset that are associ-
ated with kitchen and living rooms. We removed one label,
hot dog, due to WordNet disambiguating hot dog to sand-
wich. This is due to WordNet characterizing that hot dogs
are sandwiches, which is partially true (i.e., a hot dog is
a piece of meat between bread). Future work will address
how to take into account words that are part of the same hy-
pernym hierarchy. The constructed BLN contains 257 nodes
and 358 edges.

To gather data for the LKB, we used the following exper-
imental steps: (1) put object(s) in our testing environment,
(2) allow the robot to observe the environment and update
the LKB, (3) update the state of the object(s) in our environ-
ment, then repeat this process for the desired number of ob-
servations. After each observation, we evaluate the accuracy
for finding objects or naming object properties on a fixed test
set. To populate the semantic locations, we provide an expert
labeled semantic map that correlates to the described scene
in Fig. 6. We use a color classifier to label each object in the
test environment and the BLN for the object material. The
average classifier accuracy is 70% and average clarifications
needed for object property is 2.

If a human is available, SiRoK has the option to interac-
tively validate properties in the BLN. We performed 84 clar-
ifications to prune 50 edges in the vBLN from 195 property
edges using the human-verification algorithm mentioned in
Section III-C.4. While this is a large number of clarifica-
tions, during a deployment such queries could occur over a
length of time (multiple days) as the robot spends time learn-
ing about its environment. Moreover, our algorithm is cur-
rently limited by ConceptNet. ConceptNet lacks rich inter-
property knowledge (i.e. if an apple is sweet, one can as-
sume it is also juicy) and the notion of classes (i.e. sweet,
sour, spicy, tangy all belong to the same class of taste), the
number of queries is large. However, knowledge of material
class and good inter-property knowledge, it fared well for
bottle where only 3 queries were asked for 9 properties or
only 1 for 5 properties of cup. The final dissimilarity score of
the vBLN to ground truth object properties is 0.11 (6 edges
difference). This means that the BLN is only 6 edges (an
edge is between an object and a property) away from the
ground truth and managed to learn 50 out of the total 53
edges from the ground truth.

Experiments

We break down this section into two experiments: (1) find-
ing objects in the scene and (2) determine the properties of
objects. For both, we hypothesize that the role of variability
in object options is a primary factor in deciding when to use
abstract vs. locally learned knowledge. If an object moves
around more frequently, we should rely on reasoning about
where we might find the object as opposed to remembering
where was the last time or most frequently seen location. For
object properties, we expect to see a similar trend.
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Figure 7: Average accuracy (AKB vs. LKB) across 5000
permutations to predict the top 3 locations of potted plant
and bowl

Finding Objects For object location, we collect two sep-
arate sets of observations, one using a bowl and one using a
potted plant. The two objects can be seen in Fig 1. For each
object we collected 20 observations of the objects in vari-
ous locations in the kitchen and living room. We determined
the locations for each object using two different distributions
for each object, one with more movement and one with less
movement. The bowl was on the higher end of a variability
spectrum (table1: 20%, table4: 20%, counter: 12%, table2:
12%, table3: 12%, drawer1: 12%, drawer2: 12%), while the
potted plant object was on the lower end (table3: 50%, ta-
ble2: 25%, counter: 25%). Each time an object is detected by
the robot, the object’s semantic location is written to LKB.

To test and compare AKB and LKB, we randomly select
25% of the observations to leave out as the test set. This re-
sults in five observations in the test set and 15 in the train
set. We test the accuracy AKB and LKB incrementally by
introducing each observation separately. Specifically, we ask
AKB and LKB to predict the location of the 5 observations
in the test set after seeing one observations, two observa-
tions, and so on. AKB and LKB predict the locations by
providing a ranked list of possible locations as described in
Data Source Selection. We randomly select 5000 different
permutations of the observation order and report the average
accuracy and standard deviation to account for orderings ef-
fects. Note that the AKB is generated prior to seeing the ob-
servations as it represents general domain-free knowledge,
so the accuracy of the AKB does not change over observa-
tions.

The results of this test can be seen in Fig. 7 where the
robot turns the top three locations from its ranked list (sim-
ulating if the robot were allowed to look at three different
locations to find the object). We can see that for the potted
plant, the LKB reaches 80% accuracy by the fourth obser-
vation. However, for the bowl, the overall accuracy of the
LKB reaches only 65% for top three locations, which is only
slightly better than chance. When comparing AKB to LKB,
it is clear that in cases where there is low variability in the
current environment, learning about the object’s location is
superior to using general knowledge. However, for the bowl,
where locations are more varied, the AKB does a better job
of reasoning where in general might bowls be located. Fur-
thermore, for both cases, when there is little to no knowledge
of the scene, AKB still offers some insight to where the ob-
ject might be located as opposed to LKB. We observed the

Figure 8: The bottle outlined in long green dashes, solid blue
lines, and dotted red lines are plastic, metal, and glass re-
spectively. The bottles are colored from left-to-right as blue,
pink, green, blue, white, white, yellow, red, green, and green.

Figure 9: Average accuracy (AKB vs. LKB) across 5000
permutations for predicting the top property of 10 different
bottles for two different properties (color and material)

same trends when testing the top-one results, although with
lower overall performance rates.

Object Properties As described in Data Source Selection,
object properties are fixed to a specific instance. As a re-
sult, we test the robot’s ability to predict object properties
by using a fixed test set that is also the observation set. As
the robot observes its environment over time (similar to how
one gets acquainted to a new environment), all of the ob-
jects in the environment will be added to its observation set.
We select objects of the same class type (e.g., all bottles),
to determine if knowledge properties of specific objects can
provide insight on the general class of objects. Similar to
object locations, we hypothesize that the variability of pos-
sible values for a property affects when and how we use our
knowledge base. As a result, we select bottles with varying
levels of variance within its properties (i.e., color is highly
variable while materials is not). For this specific experiment,
we selected 10 bottles (Fig. 8). Specifically, they ranged in
color (green: 3, blue: 2, white: 2, yellow: 1, red: 1, pink:1)
and materials (plastic: 7, metal: 2, glass: 1) with color more
variable and material less.

The results of the test across the 10 bottles can be found
in Fig. 9 for both color and material. We limit the AKB and
LKB to just one guess as opposed to three for locations be-
cause for object properties, there is a higher threshold for
errors. While searching three different locations in a home
environment might take slightly longer, it is not unreason-
able or dangerous for the robot to do so. On the other hand,
predicting that an object is not metallic and putting it in
the microwave could have dire consequences. As expected,
the LKB performs poorly at predicting highly varied object
properties. This makes intuitive sense as knowing that one
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Figure 10: Accuracy of all class labels for location, color,
material, and type.

cup is blue does not guarantee the next is blue. For material,
the LKB performs well at predicting material as it captures
that most bottles in the environment are plastic.

However, it is when we look at the color, that we gain
interesting insight about object properties. We see that the
AKB follows a slightly different trend than we observed in
the object location experiment. We expected that with highly
varying properties that the AKB could provide more insight
than the LKB. However, if we look deeper at the results of
the AKB, we discover that for the class bottle, the AKB has
no prediction for color. We believe this points to an impor-
tant distinction between the variability of an object property
and the variability of an object location. When an object’s
property can take on almost any value (e.g., bottles can be
pretty much any color), general knowledge offers little to no
insight as to what property the object might have. Further-
more, this situation is also difficult for LKB to learn as the
best we can hope for is chance. This suggests that for cer-
tain object properties, the only approach to predicting object
properties that are highly variable is to remember the exact
properties of the instance or perform directly reasoning us-
ing lower level features of the object. For both location and
properties, we variability effects various accuracy levels of
the AKB and LKB. To fully understand the extent in which
this insight can be extended to a larger number of classes and
properties, we perform a simulated experiment that looks at
the variance accuracies across all described classes.

Simulated Evaluation

We exhaustively evaluate how different sources of informa-
tion impact the various queries listed in Abstract Knowledge
Base using a similar procedure and experimental setup for
each query to Building the Knowledge Bases. Specifically,
we populated a simulated world of object instances, and ran-
domly assigned attribute values (seen in Fig. 3) and locations
(seen in Fig. 6). Properties and locations were made class
specific to better capture the real-world (e.g., no couch in-
stances could be located in a drawer and televisions cannot
be made of paper). While the rules set in simulation may
not capture the rules of a specific real-world environment,

they do capture the relationship between class variability and
LKB accuracy and can be viewed as a unique layout of a
specific home.

Evaluation Metric and Results

To test each query type, we start with a set of simulated in-
stances. This set is taken as the true state of the world. Then
a set of world state observations are created by randomly
selecting locations and properties for each instance in the
world and repeating the process for the number of world
state observations. This set of world state observations were
used as actual data for the LKB to process and store. To
validate our hypothesis in Experiments, the evaluation was
done similarly to that of the robot experiment where we re-
port the top three locations and top one property. For the
last query, object types (IsA), was tested by comparing the
results of the returned values to three sets of human gener-
ated labels base on common sense for the home environment
(e.g., IsA(Apple, Fruit) is true whereas IsA(Bowl, Stadium)
is false).

In Experiments, we see a limited view of object locations
and classes. By doing the simulated evaluation, we can look
at if the trends seen in the robot experiment were reflected
in the 31 different class types. The results of this evaluation
are in Fig. 10. The table shows the accuracy of the AKB
and LKB for location, color, and material by class. They are
further broken down into accuracy values after seeing one
observation vs seeing all 15 observations. The table also in-
cludes the different IsA relations for each object class.

We can see that several of the trends observed in the robot
experiment hold true. For example, ovens, which are less
variable in location, have a higher initial AKB accuracy than
the LKB. The LKB learns the oven location perfectly after
15 observations. In general, color, which varies highly does
poorly for both ABK and LKB unless the object has a notion
of a color (e.g., carrot and broccoli). We see that the AKB
does well on the material property if the class has a typical
material it is made out of (e.g., books, sink, spoon). We test
this on an aggregate scale in the next section. For the IsA
queries, the average accuracy of the relations was 72%. Be-
tween the three sets of human labels, there was an 83.17%
average pairwise percent agreement.The accuracy values be-
tween all three users were within 2% of each other. We can
look at Fig. 10 to see that this accuracy can be reflected in
the labels produced. It correctly identifies useful types such
as apple is a food and bottle is a container. The few cases
where IsA does not perform well can be seen with bowl be-
ing related to stadium and glass to drug.

Role of Variability

The results show that taking into account variability of local
knowledge history will be essential for reasoning about new
situations. The general trend is that as variability increases,
a discount factor should be used to emphasize sources of
general knowledge that are resistant to such effects. Fig. 11
was generated by categorizing each simulation output seen
in Fig. 10 as either low (1-3 alternatives), medium (4-6 alter-
natives), or high (7+ alternatives) variability and averaging
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Figure 11: Relationship between LKB accuracy and vari-
ability.

all the results for each category. It shows that as variabil-
ity increases, the LKB accuracy drops. For extreme levels
of variability similar to in Object Properties, even a general
knowledge systems fails. In these situations, a robot should
rely on direct observations or chance.

Conclusions

In this work we introduce the SiRoK framework and sys-
tematically evaluate it through robot experiments and simu-
lation. We use SiRoK to better understand the trade offs be-
tween general knowledge bases that store symbols and con-
cepts and local knowledge bases that store perceptual data.
We find that variability is a key heuristic to take into ac-
count when evaluating knowledge. In future works, we hope
to find methods of fusing the disparate knowledge sources,
improving the quality of the BLN in our AKB, and utilizing
the IsA query.
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