
Planning Hierarchies and
Their Connections to Language

Nakul Gopalan
ngopalan@cs.brown.edu

Brown University

Abstract

Robots working with humans in real environments need to
plan in a large state–action space given a natural language
command. Such a problem poses multiple challenges with
respect to the size of the state–action space to plan over, the
different modalities that natural language can provide to spec-
ify the goal condition, and the difficulty of learning a model
of such an environment to plan over. In this thesis we would
look at using hierarchical methods to learn and plan in these
large state–action spaces. Further, we would look the using
natural language to guide the construction and learning of hi-
erarchies and reward functions.

Introduction
In this work we consider the problem of robots working
with humans in real world environments, and try to postu-
late some solutions that are feasible to solve such problems
efficiently. There are many challenges that robot interact-
ing with humans, we specify a few that we try to address in
this work. The first challenge is to plan under uncertainty in
large state–action spaces, which are continuous. The prob-
lem is also exacerbated as the number of manipulable ob-
jects in the environment increase, as there is a combinato-
rial explosion in the state–action space with each object the
agent can manipulate. In this thesis we will explore hierar-
chical methods to solve such tasks.

The second challenge is to follow a natural language com-
mand to its goal specification. Natural language allows mul-
tiple modalities to present commands. Commands can be
specified at different orders of granularity, coarse or fine, al-
lowing a range to specify commands like “get to the library”
to “take a left turn”. Further, commands can be specified
with ends or means of the task as the goal. For example,
an instruction to “go to the red room” is very different from
“go to the red room through the long corridor.” In this thesis
we will look at methods that ground natural language com-
mands to reward functions hierarchies or plan directly, de-
pending on the modality demanded by the natural language
command.

The third challenge involves learning to solve such tasks
efficiently. This involves learning hierarchies and spatio–
temporal abstractions that construct the hierarchies. We are

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

interested in looking at connections between attribute learn-
ing and option learning to construct these hierarchies. At-
tribute learning previously has been done using trajectories
or natural language. We want to combine these ideas to learn
hierarchies, which are efficient to plan over.

There are other challenges in robotics like partial observ-
ability, dialog, vision for robotics, task generalization, etc.
which are not the focus of this thesis. In the next sections
we would set up the first three challenges in detail along
with our proposed solutions.

The Planning problem

When carrying out tasks in unstructured, multifaceted en-
vironments such as factory floors or kitchens, the result-
ing planning problems are extremely challenging due to the
large state and action spaces (Bollini et al. 2012; Knepper
et al. 2013). Typical planning methods require the agent to
explore the state–action space at its lowest level, resulting in
a search for long sequences of actions in a combinatorially
large state space. For example, cleaning a room requires ar-
ranging objects in their respective places. A naive approach
for arranging object might have to search over all possible
states by placing all objects in all possible locations, result-
ing in an intractable inference problem with increasing ob-
jects.

One promising approach is to decompose planning prob-
lems in such domains into a network of independent sub-
goals. This approach is appealing because the decision-
making problem for each subgoal is typically much simpler
than the original problem. There are two ways in which the
decision problem can be simplified. First, instead of select-
ing between actions, the agent can select between subgoals
that are recursively solved, decreasing the search depth. Sec-
ond, the state representation of the world can be compressed
to include only information that is relevant to the current de-
cision problem. Importantly, planning algorithms for each
subproblem can be custom-tailored, allowing each goal to
be solved as efficiently as possible.

We proposed Abstract Markov Decision Process (AMDP)
hierarchies as a method for reasoning about a network of
subgoals (Gopalan et al. 2017 in press), we describe the
formalism briefly here. AMDPs offer a model-based hier-
archical representation that encapsulates knowledge about
abstract tasks at each level of the hierarchy, enabling

The 2018 AAAI Spring Symposium Series

532



(a) Taxi

PUTDOWNPICKUP

ROOT

GET PUT

NAV(R) NAV(G) NAV(B)NAV(Y)

N S E W

(b) Taxi AMDP hierarchy

Figure 1: (a) The Taxi problem, where the taxi needs to drop
the passenger to their goal; (b) the Taxi AMDP hierarchy,
nodes indicate subgoals which are solved using an AMDP
or a primitive action. The edges are actions belonging to the
parent AMDP. Shaded nodes indicate which subgoals are ex-
panded by AMDPs in a given state. In contrast, bottom-up
approaches like MAXQ (Dietterich 2000) expand all nodes
in the figure. These savings result in significant total plan-
ning computation gains: AMDP planning requires only 3%
of the backups that MAXQ requires for the Taxi problem.

much faster, more flexible top–down planning than previ-
ous bottom–up methods like MAXQ (Dietterich 2000) or
Options (Sutton, Precup, and Singh 1999). An AMDP is an
MDP whose states are abstract representations of the states
of an underlying environment (the ground MDP). The ac-
tions of the AMDP are either primitive actions from the en-
vironment MDP or subgoals to be solved. An AMDP hierar-
chy is an acyclic graph in which each node is a primitive ac-
tion or an AMDP that solves a subgoal defined by its parent.
The main advantage of such a hierarchy is that only subgoals
that help achieve the main task need to be planned for; cru-
cially, plans for irrelevant subgoals are never computed. An-
other desirable property of AMDPs is that agents can plan in
stochastic environments, since each subgoal’s decision prob-
lem is represented by an MDP. Moreover, each subgoal can
be independently solved by any off-the-shelf MDP planner
best suited for solving that subgoal.

For example, consider the Taxi problem (Dietterich 2000)
shown in Figure 1a and its AMDP hierarchy in Figure 1b.
The objective of the task is to deliver the passenger to their
goal location out of four locations on the map. The subgoal
of Get Passenger, which picks up the passenger from a
source location, is represented by an MDP, with lower-level
navigation subgoals, Nav(R), and a passenger-pickup sub-
goal, Pickup. The state space to solve the Get Passenger
subgoal need not include certain aspects of the environment
such as the Cartesian coordinates of the taxi and passenger.
To solve this small MDP when picking up a passenger at the
Red location, it is unnecessary to solve for the subpolicy to
navigate to the Blue location. Our hierarchy enables a deci-
sion about which subgoal to solve without needing to solve
the entire environment MDP.

In this top-down methodology, planning is performed by
first computing a policy for the root AMDP for the current
projected environment state, and then recursively comput-
ing the policy for the subgoals the root policy selects. In
contrast a bottom up planner like MAXQ or options based

based planning would compute value functions over the hi-
erarchy by processing the state–action space at the lowest
level and backing up values to the abstract subtask nodes.
This bottom-up process requires full expansion of the state–
action space, resulting in large amounts of computation.

Moreover, since the tasks are abstractly defined (for ex-
ample, “take passenger to blue location”), changing the task
description from the “blue” to the “red” location is straight-
forward, and users do not have to directly manipulate the
reward functions at each level of the hierarchy. This abstrac-
tion is useful in robotics, as human users can simply change
the top-level task description and the required behavior will
be achieved by the hierarchy.

Formally, we define an AMDP as a six-tuple (S̃ , Ã, T̃ ,
R̃, Ẽ , F ). These are the usual MDP components, with the
addition of F : S → S̃ , a state projection function that
maps states from the environment MDP into the AMDP state
space S̃ . Additionally, the actions (Ã) of the AMDP are ei-
ther primitive actions of the environment MDP, or are asso-
ciated with subgoals to solve in the environment MDP. The
transition function of the AMDP (T̃ ) must capture the ex-
pected changes in the AMDP state space upon completion
of these subgoals. With these action and state semantics, an
AMDP, in effect, defines a decision problem over subgoals
for the environment MDP.

Naturally, each subgoal for a task must be solved. How-
ever, even a single subgoal might be challenging to solve in
the environment MDP. Therefore, we introduce the concept
of an AMDP hierarchy H = (V,E), which is a directed
acyclic graph (DAG) with labeled edges. The vertices of the
hierarchy V consist of a set of AMDPs M and the set of the
primitive actions A of the environment MDP. The edges in
the hierarchy link multiple AMDPs together, with the edge
label associating the action of an AMDP with either a prim-
itive environment action or a subgoal that is formulated as
an AMDP itself. Consequently, an AMDP hierarchy recur-
sively breaks down a problem into a series of small subgoals.

We now describe planning with a hierarchy H of AMDPs.
The critical property of our planning approach is to make de-
cisions online in a top-down fashion by exploiting the tran-
sition and reward function defined for each AMDP. In this
top-down methodology, planning is performed by first com-
puting a policy for the root AMDP for the current projected
environment state, and then recursively computing the pol-
icy for the subgoals the root policy selects. Consequently,
the agent never has to determine how to solve subgoals that
are not useful subgoals to satisfy, resulting in significant
performance gains compared to bottom-up solution meth-
ods. This top-down approach does require that the transition
model and reward function for each AMDP are available.

If each AMDP’s transition dynamics accurately mod-
els the subgoal outcomes, then an optimal solution for
each AMDP produces a recursively optimal solution for the
whole problem; if the transition dynamics are not accurate,
then the error associated with the overall solution can still
be bounded as shown in our previous work (Gopalan et al.
2017 in press). Further, as each sub-goal has a local model,
we can ground any sub-goal in the DAG depending on the

533



Algorithm 1 Online Hierarchical AMDP Planning

function SOLVE(H)
GROUND(H, ROOT(H))

function GROUND(H, i)
if i is primitive then � recursive base case

EXECUTE(i)
else

si ← Fi(s) � project the environment state s
π ← PLAN(si, i)
while si /∈ Ei do � execute until local termination

a ← π(si)
j ← LINK(H, i, a) � a links to node j
GROUND(H, j)
si ← Fi(s)

task specification as shown in the next section.
Pseudocode for online hierarchical AMDP planning is

shown in Algorithm 1. Planning begins by calling the recur-
sive ground function from the root of H . If node i passed to
the ground function is a primitive action in the environment
MDP, then it is executed in the environment. Otherwise, the
node is an AMDP that requires solving. Before solving it,
the current environment state s is first projected into AMDP
i’s state space with AMDP i’s projection function Fi. Next,
any off-the-shelf MDP planning algorithm associated with
AMDP i is used to compute a policy. The policy is then
followed until a terminal state of the AMDP is reached. Fol-
lowing actions selected by the policy for AMDP i involves
finding the node the actions links to in hierarchy H , and then
calling the ground function on that node. Note that after the
ground function returns, at least one primitive action in the
environment should have been executed. Therefore, after
ground is called, the current state for the AMDP is updated
by projecting the current state of the environment with Fi.

Planning with AMDPs shows significant improvements in
planning times when compared with traditional bottom-up
planners or flat planners when tested across different do-
mains as shows in the results of (Gopalan et al. 2017 in
press). We also showed a real time planning application
for task and motion planning in robotics. In this demo a
Turtlebot moved a block to from one room to the goal room
in presence of environmental disturbances as shown in our
video1. This is a hard planning problem with a continu-
ous state–action space, and stochasticity in the environment.
The agent shows reactive control to retrieve the block in the
video as soon as it is snatched, to move the block to the goal
room. For more details please refer (Gopalan et al. 2017 in
press).

Hence AMDPs show significant improvements in plan-
ning times across multiple domains, even with continuous
state–action spaces. Now that we have a tool to plan in large
domains, we look next at natural language as an input and
the different modalities of inputs, some of which would find
the use of AMDP hierarchies useful.

1https://youtu.be/Bp3VEO66WSg

Goal specification with Natural Language

Natural language provides an easy interface for an untrained
public to work with robots. Such robots that understand
natural language commands must at the very least under-
stand goal based commands that ask the robot to achieve
a certain goal configuration. Abstraction is important for
achieving such goal conditions because it is much harder
to map natural language to a sequence of robot control
signals. Instead existing approaches map natural language
commands to a formal representation at some fixed level of
abstraction (Chen and Mooney 2011; Matuszek et al. 2012b;
Tellex et al. 2011). While effective at directing robots to
complete predefined tasks, mapping to fixed sequences of
robot actions is unreliable when faced with a changing or
stochastic environment. Accordingly, (MacGlashan et al.
2015) decouple the problem and use a statistical language
model to map between language and robot goals, expressed
as reward functions in a Markov Decision Process (MDP).
Then, an arbitrary planner solves the MDP, resolving any
environment-specific challenges. As a result, the learned
language model can transfer to other robots with different
action sets so long as there is consistency in the task rep-
resentation (i.e., reward functions). However natural lan-
guage problem specification has different different kinds of
requirements: granularity, means and ends of task solving,
and temporal specification of goals.

First is the aspect of granularity. For example, a brief
transcript from an expert human forklift operator instructing
a human trainee has very abstract commands such as “Grab a
pallet,” mid-level commands such as “Make sure your forks
are centered,” and very fine-grained commands such as “Tilt
back a little bit” all within thirty seconds of dialog. Humans
use these varied granularities to specify and reason about a
large variety of tasks with a wide range of difficulties. Fur-
thermore, these abstractions in language map to subgoals
that are useful when interpreting and executing a task. More-
over, MDPs for complex, real-world environments face an
inherent tradeoff between including low-level task represen-
tations and increasing the time needed to plan in the pres-
ence of both low- and high-level reward functions (Gopalan
et al. 2017 in press).

To address this problems, we developed an approach for
mapping natural language commands of varying complex-
ities to reward functions at different levels of abstraction
within a hierarchical planning framework. This approach
enables the system to quickly and accurately interpret both
abstract and fine-grained commands. Our system uses a
deep neural network language model that learns how to map
natural language commands to the appropriate level of an
AMDP planning hierarchy. By coupling abstraction level in-
ference with the overall grounding problem, we fully exploit
the subsequent AMDP hierarchy to efficiently execute the
grounded tasks. To our knowledge, we are the first to con-
tribute a system for grounding language at multiple levels of
abstraction, as well as the first to contribute a deep learning
system for improved robotic language understanding. The
results show faster average planning times at all levels of the
hierarchy when compared to a base level planner. A demo

534



of the system can be seen here2. The system can accept low
level commands like “go north” and high level commands
like “take the block to the red room.”

Next we would briefly describe other natural language
grounding problems that interest us. First is problem of the
means and ends of task solving, where a user might spec-
ify how to solve a task. For example the trajectory for “go
to red room through the blue room” is very different from
the trajectory for “go to the red room.” This problem can be
solved by a language model that recognizes when the means
of solving a task are more important and would then plan
for the task with different sets of planners. Second is the
problem of temporal specification of rewards, where a com-
mand might be “go to the red room and then go to the blue
room.” Here, we can parse the language with Linear Tem-
poral Logic (LTL) and create a non-Markovian reward func-
tion, where the reward functions switch as a subtask is com-
plete. This formulation would be important to solve tem-
porally extended tasks with multiple subgoal specifications
given by the human user. Abstraction would be important in
these LTL specification as solving these behavioral problems
as the lowest level of abstraction might be computationally
intractable. Next we look at how we might learn these ab-
stractions.

Learning AMDP Hierarchies

The hierarchies that we looked at until now were hand de-
signed, however an agent has to be capable of creating these
hierarchical abstractions on its own in the real world. We
postulate that natural language provides some clues about
the levels of abstraction that a human agent might care about
when working with such robots. We have two goals in this
section; firstly we need to learn the local models for AMDP
hierarchies; secondly a more important goal is to learn an
AMDP hierarchy with language and trajectories.

To solve the first part we can use R-max (Brafman and
Tennenholtz 2002) on every local model of an AMDP hier-
archy. This approach will learn the level 1 models by col-
lecting samples from the environment, but models at every
higher level can be learned exactly by sampling from the
models learned at level 1. This method would be sample
efficient and would enlighten the trade-offs of having a pre-
cise, expensive to learn hierarchical model versus a cheap
erroneous hierarchical model.

The second and more important goal is to learn an AMDP
hierarchy. Konidaris 2016 uses options or temporally ex-
tended actions to learn symbols from initiation and termi-
nation sets, to create state abstractions and a higher level in
the hierarchy. We believe that an important method to learn
symbols can be via natural language. Matuszek et al. 2012a
learned attributes of objects present in a state to model lan-
guage and perception together. Borrowing ideas of attribute
learning from existing literature, we can create methods to
learn symbols and associated abstract states directly from
demonstrations, and plan for them using AMDP hierarchies.
A simpler idea to test attribute learning might be to learn

2https://youtu.be/9bU2oE5RtvU

object parameterized options, akin to parametrized skills,
where we learn object attributes with natural language.

This learning method would satisfy most of the goals with
respect to an agent in the real world that learns from natural
language and example trajectories; plans in real time given a
natural language command at varying degrees of granularity
and temporal specification.

Conclusion

In this work we look at the problems of understanding nat-
ural language groundings, learning efficient hierarchies and
planning efficiently to have a robot perform tasks real time
in stochastic and large state–action spaces. Our initial re-
sults show that the planning problem can be made easier
with AMDP hierarchies. We have made some inroads in the
natural language grounding problems, where we can specify
problems at different levels of granularity to an agent. How-
ever, we still have to make large amounts of progress in the
problem of learning of a hierarchy. We believe our meth-
ods would lead to faster learning of hierarchies and shorter
planning times when compared to traditional methods.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under grant number IIS-1637614 and
the National Aeronautics and Space Administration under
grant number NNX16AR61G.

References

Bollini, M.; Tellex, S.; Thompson, T.; Roy, N.; and Rus,
D. 2012. Interpreting and executing recipes with a cook-
ing robot. In International Symposium on Experimental
Robotics.
Brafman, R. I., and Tennenholtz, M. 2002. R-max-a
general polynomial time algorithm for near-optimal rein-
forcement learning. Journal of Machine Learning Research
3(Oct):213–231.
Chen, D. L., and Mooney, R. J. 2011. Learning to interpret
natural language navigation instructions from observations.
In AAAI Conference on Artificial Intelligence.
Dietterich, T. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13:227–303.
Gopalan, N.; desJardins, M.; Littman, M. L.; MacGlashan,
J.; Squire, S.; Tellex, S.; Winder, J.; and Wong, L. L. 2017
in press. Planning with abstract markov decision processes.
In International Conference on Automated Planning and
Scheduling.
Knepper, R.; Tellex, S.; Li, A.; Roy, N.; and Rus, D. 2013.
Single assembly robot in search of human partner: Versatile
grounded language generation. In ACM/IEEE International
Conference on Human-Robot Interaction Workshop on Col-
laborative Manipulation.
Konidaris, G. 2016. Constructing abstraction hierarchies
using a skill-symbol loop. In International Joint Conference
on Artificial Intelligence.

535



MacGlashan, J.; Babeş-Vroman, M.; desJardins, M.;
Littman, M. L.; Muresan, S.; Squire, S.; Tellex, S.; Aru-
mugam, D.; and Yang, L. 2015. Grounding English com-
mands to reward functions. In Robotics: Science and Sys-
tems.
Matuszek, C.; FitzGerald, N.; Zettlemoyer, L.; Bo, L.;
and Fox, D. 2012a. A joint model of language and per-
ception for grounded attribute learning. arXiv preprint
arXiv:1206.6423.
Matuszek, C.; Herbst, E.; Zettlemoyer, L.; and Fox, D.
2012b. Learning to parse natural language commands to a
robot control system. In International Symposium on Exper-
imental Robotics.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence 112(1):181–
211.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M. R.; Banerjee,
A. G.; Teller, S.; and Roy, N. 2011. Understanding natural
language commands for robotic navigation and mobile ma-
nipulation. In AAAI Conference on Artificial Intelligence.

536


