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C. v. Ossietzky University

26111 Oldenburg, Germany

Abstract

Algorithms incorporating learned functionality play an in-
creasingly important role for highly automated vehicles.
Their impressive performance within environmental percep-
tion and other tasks central to automated driving comes at
the price of a hitherto unsolved functional verification prob-
lem within safety analysis. We propose to combine statisti-
cal guarantee statements about the generalisation ability of
learning algorithms with the functional architecture as well as
constraints about the dynamics and ontology of the physical
world, yielding an integrated formulation of the safety verifi-
cation problem of functional architectures comprising artifi-
cial intelligence components. Its formulation as a probabilis-
tic constraint system enables calculation of low risk manoeu-
vres. We illustrate the proposed scheme on a simple automo-
tive scenario featuring unreliable environmental perception.

Modern AI and especially machine learning (ML) com-
ponents are believed to be a key enabler for bringing highly
automated driving functions at SAE levels 4 to 5 (SAE and
others 2014) onto the market. Before such systems can be
released, obtaining a rigorous guarantee of their safety is
essential: systematic faults within the design (including the
training phase of ML based algorithms) could have dramatic
effects on the overall safety of the mass-marketed system
implementations and hence also for their societal accep-
tance. A key challenge for this verification is the inherent
uncertainty involved in object identification. To illustrate the
impact of such uncertainties, consider the following artifical
example of a misperception (see Fig. 1).

At time t0, the EGO vehicle (E) has detected another ve-
hicle v1 on the left lane using information from a camera
and RADAR sensors. At a later time instant t1, the vehicle
v1 has closed the gap to EGO and consequently is detected
still. Additionally, another vehicle v2 has been detected at
very short distance in front of EGO, while another detec-
tor has recognized the presence of a bridge in front. In this
situation, EGO is confronted with the decision to either per-
form an overtaking manoeuvre – thereby risking a collision
with v1, or to perform an emergency brake to mitigate a po-
tential collision with vehicle v2. A third option would be to
perform an evasive manoeuvre to the right, thereby risking
a collision with a bridge pillar. Note that at t0, the space in
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Figure 1: Example scenario. Perception of the environment
is considered at two distinct time instants t0 and t1.

front of the EGO vehicle has been perceived as free. In this
scenario, we assume that the time gap t1 − t0 is insufficient
for a vehicle v2 to be outside warning range at t0 and to get
to the position (and speed) perceived for v2 at t1, given the
physical constraints on vehicle dynamics. Thus, the results
of the different detectors evidently are contradictory.

To choose an acceptable manoeuvre, a careful assessment
of the risks on a vehicle level is necessary – for example by
quantifying possible outcomes of a decision using injury risk
scales, like AIS or ISS (MacKenzie, Shapiro, and Eastham
1985). Individual ML components, however, are tradition-
ally evaluated using component level loss functions (Cesa-
Bianchi, Conconi, and Gentile 2004). Using the common 0-
1 loss (l1-0), the resulting risk at the component level can be
interpreted as bound on the probability of correctly classi-
fying a random input (distributed according to a fixed but
unknown distribution):

1− E[l1-0] = P (correctly classified) ∈ [p(δ), p(δ)] (1)

where the right hand side denotes the confidence interval as
obtained from the available bounds, i.e. via cross-validation
or generalisation bounds such as within the Probably-
Almost-Correct (PAC) framework. These bounds in turn de-
pend on the confidence level δ. Under the assumption that
any new data (different from the training data) would be gen-
erated according to the same probability distribution which
also generated the training data, a generalisation statement
can be formulated and proven which provides the desired
bound on the true risk.

In order to use such information to assess the risk on
vehicle level, we propose a layered approach integrating
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the individual ML components into a constraint system
which includes prior knowledge about physical properties
and the functional architecture. The resulting architecture
thereby combines features from probabilistic graphical mod-
els (Koller and Friedman 2009) capturing probabilistic re-
lationships with features from non-deterministic constraint
systems. We consequently employ the same definition of
risk as used in reliability and utility theory (expected loss),
yet permit underspecification of the probability distribution
determining the expected values of interest. Among the pos-
sible instants of the underspecified distribution, we aim at
calculating worst-case expectations. This permits to com-
pute robust low-risk manoeuvres at runtime, whereby indi-
vidual performance assessment in terms of the empirical risk
at component level can be combined with the obtained con-
straint system to bound the overall risk at vehicle level.

In the following, we will illustrate the proposed approach
on the above example, thereby illustrating its potential.

The Probabilistic Constraint System
In the example of Fig. 1, we are interested in the following
analysis questions: Can we compute a robust low-risk ma-
noeuvre for EGO at t1, which keeps risk adequately bounded
despite potentially uncertain information? Given such a ro-
bust manoeuvre, can we quantify the worst-case residual risk
associated with such controller?

To answer such questions, we first construct a constraint
system reflecting assumed knowledge as well as imperfect
information about the underlying situation. To this end, we
try to build a probabilistic system similar to a dynamic
Bayesian network (Murphy and Russell 2002). In practice,
we sometimes have to admit unknown dependencies not ex-
pressible in standard Bayesian networks. For such depen-
dencies, we possess no explicit probability distribution, but
can only model constraints. We illustrate such a constraint
system in Fig. 2, where the functional architecture is re-
flected on the left side whereas information about the real
world is depicted on the right side. In the following, we re-
fer to each signal or measurement (nodes within the figure)
as variables, which can be interpreted as (possibly Dirac dis-
tributed) random variables.

We assume that EGO’s sensor system provides a glare de-
tector, a bridge detector, and a vehicle detector tracking mul-
tiple vehicles. The result of each detector is an observed vari-
able within a Bayesian network (left side of Fig. 2). As the
environment and hence also the observation thereof evolves
over time, each variable is also annotated with a time in-
dex t0, t1 (represented as shaded duplicates of the nodes).
We assume the functional architecture to be given. Hence,
the Bayesian Network on the left side can be constructed
with known dependencies (illustrated as thin arrows). These
can contain safety mechanisms like the “Fused Vehicle De-
tection”, which employs detection of glare to improve raw
object detection by situationally reducing the importance of
camera-based detection. As these are only percepts of ob-
jects, corresponding real-world counterparts are modeled on
the right side. Within the dynamic Bayesian network, these
counterparts act as latent variables of which dependencies
and probability distributions are unknown to us. Labeled test

data, however, provide values for these variables on an in-
dividual data-point basis. Physical dynamical constraints, if
available, furthermore restrict their possible evolution over
time. Both types of information yield an overall constraint
system confining possible instantiations of the unknown dis-
tributions and thus permitting to assess worst-case (across
possible instantiations) residual risk of the resulting system.

Probabilistic constraints

Using access to ground truth data from manual labeling,
probabilistic constraints can be derived in terms of compo-
nent based performance (Eq. 1) using standard test-scores.
Within our example, the performance of vehicle detection
could specify a constraint on the conditional probability

P (v̂i | Glare ∧ vi ∧ Bridge) ∈ p̂± ε(δ) , (2)

where p̂ denotes the empirical performance, ε(δ) denotes the
accuracy of such an estimate depending on the confidence
level δ, and vi denotes vehicle vi’s actual presence whereas
v̂i represents that vi was detected. Analogously, fluctuations
of sensor readings can be described as probability distribu-
tions conditioned on environmental states. Although some
(in-)dependence connections might be known, the explicit
probability distribution might be unknown. Therefore, in-
stead of fully specifying a dynamic belief network over all
discrete and continuous variables, we only collect an incom-
plete set of constraints of the form of Eq. (2). This necessi-
tates an optimisation over the possible instantiations of such
underspecified distributions when calculating a safe bound
on the residual risk.

Dynamic constraints

In addition to such probabilistic constraints originating from
individual component tests, prior knowledge about the dy-
namics can be incorporated (blue box ’dynamic constraints’
in Fig. 2). The detected positions of vehicles v1 and v2 can
for example be constrained via kinematic constraints of the
vehicles. Such constraints can be represented as follows,
where �i(t) denotes the position of vehicle i at time t and
v, a are intervals containing minimal and maximal values
for velocity and acceleration:

�i(t+Δt) ∈
(
�i(t) + (Δtv +

1

2
a(Δt)2)

)
(3)

Additional ontological constraints can reflect prior knowl-
edge about the allowed relationship of detected objects.

As we have thus formalised a system involving variables
on vehicle level φ as well as corresponding variables in the
real world ψ, we can now relate systemic, real-world loss
(e.g., in terms of available injury risk scales) to vehicle-level
variables. As the vehicle variables include decision and ac-
tuator variables, such a loss function l(φ, ψ) evaluates the
real-world severity of detecting, deciding, and acting. Note
that both types of variables are collections of variables and in
particular include references to different temporal instances.

Risk assessment

As mentioned earlier, we are interested in the overall risk of
the designed function R as well as a situational risk Rs from
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Figure 2: Structure of the probabilistic constraint system generated from the functional architecture and the constraints obtained
via empirical evaluation as well as ontological and dynamic constraints. See text for more details.

which we can derive a robust low-risk manoeuvre in a given
situation. Mathematically, these quantities can be described
as the following expectations:

R = E(φ,ψ)[l(φ, ψ)], R
s = E(ψ|φ)[ls(φ, ψ)] (4)

Note that for the situational risk, we use the conditional dis-
tribution conditioned on observations obtained in the par-
ticular situation and a potentially different loss-function ls

(compared to the overall risk). More specifically, within the
overall risk for the designed function, we might, e.g., want
to use a binary loss function assigning l(φ, ψ) = 1 if the
situation was handled successfully and l(φ, ψ) = 0 else. For
the situational risk, we might want to use a quantitative as-
sessment of the outcome. In contrast to the common setting
of dynamic Bayesian Networks, the joint distribution pφ,ψ ,
however, is not completely given. Instead, only constraints
over such a distribution are known due to equations like (2).
More precisely, constraints as in (2) can be written as pro-
jections of the joint distribution using Bayes Rule:

P (v̂i | Glare ∧ vi ∧ Bridge) (5)

=
P (v̂i ∧ Glare ∧ vi ∧ Bridge)
P (Glare ∧ vi ∧ Bridge)

,

where each of the constraint variables either is a variable
of the vehicle domain or of the real world (see Fig. 2). As
the expression above omits some of the variables defined
in those domains, the corresponding expressions have to be
obtained by marginalising pφ,ψ . The question whether the
(overall or situational) residual risk meets a desired bound ϑ
can be formulated as a noisy optimisation problem

max
pφ,ψ∈P

E(φ,ψ)[l(φ, ψ)]
?≤ ϑ, max

pφ,ψ∈P
E(ψ|φ)[ls(φ, ψ)]

?≤ ϑ ,

(6)
where the different constraints restrict the possible distribu-
tions, in the above formulation denoted by the set P . If all

variables are discrete, constraints on the distribution can di-
rectly be encoded into constraints on the distribution-values
for different valuations of the vehicle or real-world vari-
ables. For continuous variables, the distribution has to be
parametrised accordingly. Both types of constraints, how-
ever, can be incorporated into possibly non-linear functions
gi acting on the parametrised version of the distribution and
the variables φ, ψ. For the empirical constraint of Eq. (2,5),
such functions can be formalised as follows:

Ci(P, φ, ψ) def.: gi(P, φ, ψ) ≤ ci (7)∫
p(φ, ψ)d((φ ∪ ψ) \ {v̂i, vi, Glare, Bridge})∫
p(φ, ψ)d((φ ∪ ψ) \ {vi, Glare, Bridge})︸ ︷︷ ︸

:=g0(P,φ,ψ)

≤ p̂+ ε(δ)︸ ︷︷ ︸
:=c0

Using specification techniques of stochastic satisfiability
modulo theory (Fränzle, Hermanns, and Teige 2008), the
problem (6) can alternatively be formulated as:

∃P :
∧
i Ci(P,φ,ψ)

R

φ,ψ∼P : l(φ, ψ)
?≤ ϑ (8)

Here, we collected all constraints over the distribution as
well as over the variables within the conjunction

∧
i Ci.

Exploiting importance sampling for Eq. 8 (Fränzle et al.
2015), such problem can be made amenable for analysis us-
ing available tools (Fränzle, Gao, and Gerwinn 2017). To
address scalability issues, one can also resort to statistical
model checking (Ellen, Gerwinn, and Fränzle 2014).

Verification and situational analysis

Calculating the maximal risk as formalised in the previous
section provides quantitative evidence to an overall safety
verification process on vehicle level. Depending on the num-
ber of constraints with confidence statements, one can cal-
culate an overall confidence level on the risk as well. Each
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confidence-based constraint holds with a certain confidence.
If these can be regarded as independent, the overall confi-
dence level is merely the product of the individual confi-
dence levels. In case one is not willing to assume indepen-
dence between the confidence-based constraints, the over-
all confidence level can be incorporated in a way similar to
probabilistic constraints like (2). Note that such constraints
also include constraints like c-approximate-independence as
used in (Shalev-Shwartz, Shammah, and Shashua 2017),
however we allow for even more pessimistic bounds when-
ever less information about the dependence is available.

The calculation of the maximal risk can also be performed
in a particular situation. Instead of marginalising variables
for the expected loss in (4), we can fix the valuation of ve-
hicular variables to the observed values. The maximal risk
then enables one to identify the most critical real-world sit-
uations and to choose a minimal risk manoeuvre. For our
example, this facilitates inferring whether it is indeed more
likely to falsely detect v2 at time t1 than having it not de-
tected at time t0. As due to the dynamic constraint, either
v2 has been missed at time t0 and correctly classified at t1
or the other way around, this restricts the joint distribution
to assign zero probability to the other possibilities. Together
with the empirical evidence constraints (e.g., marginal prob-
abilities observing glare or the probability of bridges occur-
ring), we can therefore calculate which of the two remaining
possibilities are more likely. As such, it can be interpreted
as the worst case interpretation of a Bayesian filter for dy-
namical systems which can be applied at each point in time.
However, as worst-case configurations have to be identified,
scalability of such an approach remains to be demonstrated
in practice, but is outside of the scope of this short-paper.

Discussion
We presented a framework designed for computing (a) the
current risk under given observations and (b) the overall risk
under the given constraints and marginal probabilities aris-
ing from empirical evaluations of different machine learning
components involved within the functional architecture.

Within our setting, such quantities are different from in-
ference tasks typically considered within Dynamic Bayesian
Networks. The central issue is that probability distributions
need not completely be known, but can be underspecified,
as illustrated by the occurrence of glare or bridges provide
constraints on the marginal. In fact, earlier approaches in
combining constraints with Bayesian Belief Networks were
frequently restricted to representing constraints as pseudo-
observations (Crowley, Boerlage, and Poole 2007) or to in-
terpreting the standard inference scheme as constraint prop-
agation (Pearl 1985). But both can also be combined to ren-
der the inference machinery more suited for such kind of
constrained network (Gogate and Dechter 2012).

Automatically learning the structure of Bayesian Net-
works has also been explored (Berg, Järvisalo, and Malone
2014). In such an approach, constraints about the parameters
(or structure) of the underlying graph can be considered. As
it fits the network parameters such that the network best ex-
plains a given dataset, that approach does not immediately
fit into our robust safety verification setting.

In our work, unknown or underspecified relations between
variables of the network are understood as spanning and
constraining a set of possible distributions. From a frequen-
tist point of view compatible with quantitative safety, we
would like to compute worst and best case scenarios under
all possible assignments across the viable probability dis-
tributions rather than missing information about the depen-
dency of different variables. This paper explains the prag-
matics and the underlying mathematical constructions; the
development of scalable tools automating such reasoning as
well as their benchmarking remain issues of future work.
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