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Abstract

We investigate the scenario that a robot needs to reach a des-
ignated goal after taking a sequence of appropriate actions in
a non-static environment that is partially structured. One ap-
plication example is to control a marine vehicle to move in
the ocean. The ocean environment is dynamic and the ocean
waves typically result in strong disturbances that can disturb
the vehicle’s motion.
Modeling such dynamic environment is non-trivial, and in-
tegrating such model in the robotic motion control is partic-
ularly difficult. Fortunately, the ocean currents usually form
some local patterns (e.g. vortex) and thus the environment
is partially structured. The historically observed data can be
used to train the robot to learn to interact with the ocean flow
disturbances. In this paper we propose a method that applies
the deep reinforcement learning framework to learn such par-
tially structured complex disturbances. Our preliminary re-
sults show that, by training the robot under artificial and real
ocean disturbances, the robot is able to successfully act in
complex and spatiotemporal environments.

Introduction and Related Work

Acting in unstructured environments can be challenging es-
pecially when the environment is dynamic and involves con-
tinuous states. We study the goal-directed action decision-
making problem where a robot’s action can be disturbed by
environmental disturbances such as the ocean waves or air
turbulence.

To be more concrete, consider a scenario where an un-
derwater vehicle navigates across an area of ocean over a
period of a few weeks to reach a goal location. Underwa-
ter vehicles such as autonomous gliders currently in use can
travel long distances but move at speeds comparable to or
slower than, typical ocean currents [Wynn et al., Smith et
al.]. Moreover, the disturbances caused by ocean eddies of-
tentimes are complex to be modeled. This is because when
we navigate the underwater (or generically aquatic) vehicles,
we usually consider long term and long distance missions,
and during this process the ocean currents can change sig-
nificantly, causing spatially and temporally varying distur-
bances. The ocean currents are not only complex in patterns,
but are also strong in tidal forces and can easily perturb the
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Figure 1: Ocean currents consist of local patterns (source:
NASA). Red box: uniform pattern. Blue box: vortex. Yellow
box: meandering

underwater vehicle’ motion, causing significantly uncertain
action outcomes.

In general, such non-static and diverse disturbances are a
reflection of the unstructured natural environment, and of-
tentimes it is very difficult to accurately formulate the com-
plex disturbance dynamics using mathematical models. For-
tunately, many disturbances caused by nature are seasonal
and can be observed, and the observation data is available for
some time horizons. For example, we can get the forecast,
nowcast, and hindcast of the weather including the wind (air
turbulence) information. Similarly, the ocean currents infor-
mation can also be obtained, and using such data allows us
to train the robot to learn to interact with the ocean currents.

Recently, studies on deep and reinforcement learning have
revealed a great potential for addressing complex decision
problems such as game playing [Mnih et al., Silver et al.,
Oroojlooyjadid et al.].

We found that there are certain similarities between
our marine robots decision-making and the game play-
ing scenarios if one regards the agent’s interacting plat-
form/environment here is the nature instead of a game. How-
ever, one general critical challenge that prevents robots from
using deep learning is the lack of sufficient training data. In-
deed, using robots to collect training data can be extremely
costly (e.g., in order to get one set of marine data using
on-board sensors, it is not uncommon that a marine vehi-
cle needs to take a few days and traverse hundreds of miles).
Also, modeling a vast area of environment can be computa-
tionally expensive.

Fortunately, oftentimes the complex-patterned distur-
bance can be characterized by local patches, where a sin-
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gle patch may possess a particular disturbance pattern (e.g.,
a vortex/ring pattern) [Oey, Ezer, and Lee], and the total
number of the basic patterns are enumerable. Therefore,
we are motivated by training the vehicle to learn those lo-
cal patches/patterns offline so that during the real-time mis-
sion, if the disturbance is a mixture of a subset of those
learned patterns, the vehicle can take advantage of what it
has learned to cope with it easily, thus reducing the compu-
tation time for online action prediction and control. We use
the iterative linear quadratic regulator [Li and Todorov] to
model the vehicle dynamics and control, and use the pol-
icy gradient framework [Levine and Koltun] to train the net-
work. We tested our method on simulations with both artifi-
cially created dynamic disturbances as well as from a history
of ocean current data, and our preliminary results show that
the trained robot achieved satisfying performance.

Technical Approach

We use the deep reinforcement learning framework to model
our decision-making problem. Specifically, we use s, a to
denote the robot’s state and action, respectively. The input
of the deep network is the disturbance information which
is typically a vector field. Our goal is to obtain a stochas-
tic form of policy πθ(s, a) = P(a|s, θ) paramterized by θ
(i.e., weights of the neural network) that maximizes the dis-
counted, cumulative reward Rt =

∑T
t′=t γ

t′−trt′ , where T
is a horizon term specifying the maximum time steps and
rt is the reward at time t and γ is a discounting constant
between 0 and 1 that ensures the sum converges. A deep
convolutional neural network is used to approximate the op-
timal action-value function Q∗(s, a) = max

π
E[Rt|st, at, π].

More details of the basic model can be found in [Mnih et
al.].

Network Design

Since the ocean currents data over a period is available, we
build our neural network with an input that integrates both
the ocean (environmental) and the vehicle’s states. The envi-
ronmental state here is a vector field representing the ocean
currents (their strengths and directions). Fig. 2 shows the
structure of the neural network.

Specifically, the input consists of two components: envi-
ronment and vehicle states. The environment component has
three channels, where the first two channels convey informa-
tion of the x-axis and y-axis of the disturbance vector field.
Since in the environment we need to define goal states, and
there may be obstacles, thus, we use a third channel to cap-
ture such information. In greater detail, we assume that each
grid of the input map has three forms: it can be occupied by
obstacle (we set its value -1), or be free/empty for robot to
transit to (with value 0), or be occupied by the robot (with
value 1). The other component of the input is a vector that
contains vehicle state information, including the vehicle’s
velocity and its direction towards the goal. Note that we do
not include the robot’s position in input because we want the
robot to be sensitive only to environmental dynamics but not
to specific (static) locations.

Environ-
ment

Vehicle States

Convolutional Layer 1

Convolutional Layer 2

FC Layer 1

FC Layer 2

Softm
ax

Rew
ards

Drop Out

Convolutional Layer 3

FC Layer v1

FC Layer v2

Figure 2: Neural Network Structure

The design of internal hidden layers is depicted in Fig. 2.
The front 3 convolutional layers process the environment
information, while the vehicle states begin to be combined
starting from the first fully connected (FC) layer. The reason
of such a design lies in that, the whole net could be regarded
as two sub-nets that are not strongly correlated: one sub-
net is used to characterize features of disturbances, which is
analogous to that of image classification; the other sub-net is
a decision component for choosing the best action strategy.
In addition, such separation of input can reduce the number
of parameters so that the training process can be accelerated.

After each convolutional layer a max-pool is applied. The
vehicle states will pass through 2 FC layers, and then are
combined with the environmental component output from
convolutional layer 3 as the input to a successive FC Layer
1. Between FC Layer 1 and 2 there exists a drop-out layer
to avoid overfitting. The Softmax layer is used to normal-
ize outputs for generating a probability distribution that can
be used for sampling future actions. Additionally, the loss
funciton is calculated using this probability distribution as
well as the actual rewards.

Loss Function and Reward

We employ the policy gradient framework for solution con-
vergence. With the stochastic policy πθ(s, a) and the Q-
value Qπθ

(s, a) for the state-action pair, the policy gradient
of loss function is L(θ) can be defined as follows:

∇θL(θ) = Eπθ

[
Qπθ

(s, a)∇θlogπθ(s, a)
]
. (1)

To improve the sampling efficiency and accelerate the
convergence, we adopt the importance sampling strategy us-
ing guided samples [Levine and Koltun].

With the objective of reaching the designated goal, our re-
warding mechanism is therefore to minimize the cost from
start to goal. The main idea is to reinforce with a large pos-
itive value for those correct actions that lead to reaching the
goal quickly, and punish those undesired actions (e.g., those
take long time or even fail to reach the goal) with small or
even negative values. Formally, we define the reward r of
each trial/episode as:

r =

{
rs, succeeded,
−(αrs + (1− α)rd), failed.

(2)
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where

rs =
1∑

t πθ(s, a)||pt − pG||2 , (3)

rd = 1− e−Dmin . (4)

where ||pt − pG||2 denotes the distance from the t-th step
position to the goal state, and Dmin = mint||pt − pG||2 is
the minimum such distance along the whole path. The term
rs in Eq. (3) evaluates the state with respect to the goal state,
whereas the term rd in Eq. (4) summarizes an evaluation
over the entire path. Coefficient α ∈ [0, 1] is an empirical
value to scale between rs and rd so that they contribute about
the same to the total reward r. In our experiments α is set to
0.9.

Offline Training and Online Decision-Making

We train the robot by setting different starting and goal
positions in the disturbance field, and the experience re-
play [Mnih et al., Riedmiller] mechanism is employed.
Specifically, we define an experience as a 3-tuple (s, a, r)
consisting of state s, action a, and reward r. The idea is to
store those experiences obtained in the past into a dataset.
Then during the reinforcement learning update process, a
mini-batch of experiences is sampled from the dataset each
time for training. The process of training is described in Al-
gorithm 1, which can be summarized into four steps.

1. Following incumbent action policies, sample actions and
finish a trial path or an episode.

2. Upon completion of each episode, obtain corresponding
rewards (a list) according to whether the goal is reached,
and assign the rewards to actions taken on that path.

3. Add all these experiences into dataset. If the dataset has
exceeded the maximum limit, erase as many as the oldest
ones to satisfy the capacity.

4. Sample a mini-batch of experiences from the dataset. This
batch should include the most recent path. Then shuffle
this batch of data and feed them into the neural network
for training. If current round number is less than the max
training rounds, go back to step 1.

With the offline trained results, the decision-making is
straightforward: only one forward propagation of the net-
work with small computational effort is needed. This also
allows us to handle continuous motion and unknown states.

Results

We validated the method in the scenario of marine robot
goal-driven decision-making, where the ocean disturbances
vary both spatially and temporally.The simulation environ-
ment was constructed as a two dimensional ocean surface,
and the spatiotemporal ocean currents are external distur-
bances for the robot and are represented as a vector field,
with each vector representing the water flow speed captured
at a specific moment in a specific location.

The robot used in simulation is a underwater glider with
a kinematic motion model with state z = (x, y, φ) including

Algorithm 1: Training
round ← 0
while round < n do

Obtain reward List〈s, a〉 of each episode.
experiences ← ∅

for all 〈s, a〉 ∈ List〈s, a〉 do
r ← get reward(s, a)
experiences ← experiences

⋃〈s, a, r〉
end for
subset ← experiences
pad up subset to batch size with data from dataset
store experiences into dataset
shuffle subset
feed subset into neural network
perform back propagation
round ← round+ 1

end while

(a) Input (b) Input(mix)

(c) Convolutional Layer 3

Figure 3: Illustration of disturbance features captured by
hidden layer

the vehicle’s position and orientation in the world frame, re-
spectively. Since the behavior of the vehicle on the 2D ocean
surface is similar to that of the ground mobile robot, thus
we opt to use a Dubins car model to simulate its motion.
(Similar settings can be found in [Yao, Wang, and Su, Mah-
moudian and Woolsey].) The dynamics can be written as:

ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω, (5)

where control inputs u = (v, ω) are the vehicle’s net speed
and turning rate, respectively. The dynamics are obvious
nonlinear and in the discrete time case are denoted as zt+1 =
f(zt, ut). Such non-linear control problem can be solved us-
ing the iterative Linear Quadratic Regulator (iLQR) [Li and
Todorov].

Network Training

We use Tensorflow [Abadi et al.] to build and train the net-
work described in Fig. 2. In our experiments, the input vec-
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Figure 4: Demonstration of the ocean currents and a path of
the robot

tor field map is 48 × 48, and the size of dataset for action
replay is set to 10000. The learning rate is 1e − 6, and the
batch size we used for each iteration is 500. We also set the
length of each episode as 1000 steps.

Fig. 3 shows some features extracted from internal layers
of the network. Fig. 3(a) illustrates the feature of a random
disturbance vector field. Specifically, the first two channels
of Fig. 3(a) are x and y components of the vector field, and
the grey-scale color represents the strength of disturbance.
The third channel of Fig. 3(a) is a pixel map that contains
the goal point (white dot) and obstacle information (black
borders).

Other grey grids denote free place. Fig. 3(b) shows a
mixed view of the features, with three channels colored in
red, green and blue, respectively. The picture depicts a local
vortex pattern with the vortex center located near the upper
left corner. Fig. 3(c) shows outputs of convolutional layer
3, from which we can observe that the hidden layers extract
some local features.

Evaluations

We implemented two methods: one belongs to the control
paradigm and we use the basic iLQR to compute the con-
trol inputs; the other one is the deep reinforcement learning
(DRL) framework that employs the guided policy mecha-
nism, where the policy is guided by (and combined with)
the iLQR solving process [Levine and Koltun].

Artificial Disturbances We first investigate the method
using artificially generated disturbances. We tested differ-
ent vector fields including vortex, meandering, uniform, and
centripetal patterns.

For different trials, we specify the robot with different
start and goal locations, and the goal reaching rate is cal-
culated by the times of success divided by total number of
simulations.

The results in Table 1 show that within given time limits,
both the iLQR and DRL methods lead to a good success rate,

and particularly the DRL performs better in complex envi-
ronments like the vortex field; whereas the iLQR framework
has a slightly better performance in relatively mild environ-
ments where current speed is low, like the meander distur-
bance field.

Then, we test the average time costs, as shown in Table 2.
The results reveal that the trials using iLQR tend to use less
time than those of the DRL method. This can be due to the
“idealized” artificial disturbances with simple and accurate
patterns, which can be precisely handled by the traditional
control methodology.

Disturbance
pattern Method Num of

trials
Num of
success

Success
rate

Vortex DRL 50 48 0.96
iLQR 50 46 0.92

Meander DRL 50 49 0.98
iLQR 50 50 1.00

Uniform DRL 50 49 0.98
iLQR 50 48 0.96

Centripetal DRL 50 49 0.98
iLQR 50 48 0.96

Table 1: Simulation with artificially generated disturbances

Ocean Data Disturbances In this part of evaluation, we
use ocean current data obtained from the California Re-
gional Ocean Modeling System (ROMS) [Shchepetkin and
McWilliams]. The ocean data along the coast near Los An-
geles is released every 6 hours and a window of 30 days of
data is maintained and retrievable [Chao].

An example of ocean current surface can be visualized in
Fig. 4, which also demonstrates a robot’s path from execut-
ing our training result.

Because the raw ROMS ocean data covers a vast area and
practically it requires several days for the robot to travel
through the whole space, thus, we randomly cropped local
areas to evaluate our training results. Fig. 5 demonstrates a
few paths generated in such randomly selected areas.

Similar to the evaluation process for the artificial distur-
bances, we also looked into those aforementioned perfor-
mances under the real ocean disturbances. We then evalu-
ate the success rate and time cost, and Table. 3 shows the
results (robot speed does not scale to map). Fig. 5 gives a
more friendly visualization of those three areas used in our
experiments. The results indicate that in most cases the DLR
performs better than the basic iLQR strategy.

Fig. 5(c) and 5(d) show scenarios that can be challenging
due to strong vortexes. Fig. 5(c) shows that by selecting a
good path going around the vortex, the robot successfully
reached the goal state. Note, in the area 3 of Fig. 5(d), a
very curvy path (e.g., near the goal point) could occur due
to some strong vortex in certain local areas. In this example,
the ocean current around the goal area has a speed approx-
imately equal to (or even greater than) the robot’s maximal
speed, but is against the robot’s moving direction, so that the
robot cannot easily proceed, and both DRL and iLQR even-
tually failed to reach the goal in this situation. A possible
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(a) area1 (b) area2 (c) area3 (d) area3

Figure 5: Examples of robot paths under different spatiotemporal disturbance patterns.

Pattern Method Num of
trials

Average
time cost

Vortex DRL 50 20.549
iLQR 50 14.811

Meander DRL 50 16.926
iLQR 50 15.367

Uniform DRL 50 17.667
iLQR 50 17.803

Centripetal DRL 50 20.220
iLQR 50 14.792

Table 2: Average time cost under artificial disturbances

Area Method Num of
trials Success rate Average

time cost

Area 1 DRL 15 1.00 13.787
iLQR 15 0.93 16.375

Area 2 DRL 15 1.00 14.998
iLQR 15 1.00 15.530

Area 3 DRL 15 0.60 22.875
iLQR 15 0.80 19.546

Table 3: Average time cost under ocean disturbances

solution is to manipulate the robot’s maximal speed to be
larger (this however may be against the reality).

From Table 1 to Table 3, we can conclude that the DRL
framework is particularly capable of handling complex and
(partially) unstructured environments.

Conclusions

In this paper we investigate applying the deep reinforce-
ment learning framework for robotic learning and acting in
partially-structured environments. We use the scenario of
marine vehicle decision-making under spatiotemporal dis-
turbances to demonstrate and validate the framework. We
show that the deep network well characterizes local features
of varying disturbances. By training the robot under artificial
and real ocean disturbances, our simulation results indicate
that the robot is able to successfully and efficiently act in
complex and partially structured environments.
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