
Information-Efficient Model Identification for Tensegrity Robot Locomotion

Shaojun Zhu, David Surovik, Kostas Bekris, Abdeslam Boularias
Department of Computer Science, Rutgers University, New Jersey, USA

{shaojun.zhu, david.surovik, kostas.bekris, abdeslam.boularias}@cs.rutgers.edu

Abstract

This paper aims to identify in a practical manner unknown
physical parameters, such as mechanical models of actuated
robot links, which are critical in dynamical robotic tasks. Key
features include the use of an off-the-shelf physics engine and
the data-efficient adaptation of a black-box Bayesian optimiza-
tion framework. The task being considered is locomotion with
a high-dimensional, compliant Tensegrity robot. A key insight
in this case is the need to project the system identification
challenge into an appropriate lower dimensional space. Com-
parisons with alternatives indicate that the proposed method
can identify the parameters more accurately within the given
time budget, which also results in more precise locomotion
control.

Introduction

This paper presents an approach for model identification by
exploiting the availability of off-the-shelf physics engines
used for simulating dynamics of robots and objects they inter-
act with. There are many examples of popular physics engines
that are becoming increasingly efficient (Erez, Tassa, and
Todorov, 2015; Bul; MuJ; DAR; Phy; Hav). These physics
engines receive as input mechanical and mesh models of the
robots in a particular scene, in addition to controls (force,
torque, velocity, etc.) applied to them, and return a prediction
of the robot’s dynamical response.

The accuracy of the prediction depends on several factors.
The first one is the limitation of the mathematical model
used by the engine (e.g., the Coulomb approximation). The
second factor is the accuracy of the numerical algorithm used
for solving the equations of motion. Finally, the prediction
depends heavily on the accuracy of the physical parameters
of the robots, such as mass, friction and elasticity. In this
work, we focus on the last factor and propose a method to
improve the accuracy of the physical parameters used in the
physics engine.

In the context of compliant locomotion systems, the
Tensegrity robot of Figure 1 is a structurally compliant plat-
form that can distribute forces into linear elements as pure
compression or tension (Caluwaerts et al., 2014). This robot’s
tensile elements can be actuated, enabling it to effectively
adapt to complex contact dynamics in unstructured terrains.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The Tensegrity robot (Caluwaerts et al., 2014).

A policy for a rolling locomotive gait of the platform has
been learned from simulated data (Geng et al., 2016). Tenseg-
rity robots are inherently high-dimensional, highly-dynamic
systems, and providing a predictive model requires a physics-
based simulator (NTRT). The accuracy of such a solution
critically depends upon physical parameters of the robot, such
as the density of its rigid elements and the elasticity of the
tensile elements. While a manual process can be followed to
tune a simulation to match the behavior of a real prototype
(Mirletz et al., 2015), it is highly desirable to conduct this
calibration using as few observed trajectories as possible. In
this work, trajectories generated by a simulation manually
tuned to a prototypical robotic platform are used to identify
the parameters of a physics engine for tensegrity modeling.
Given the high-dimensionality of the parameter space, this
is a challenging problem. This work proposes the mapping
of the system identification process to a lower dimensional
space of parameters. Methods used for dimensionality reduc-
tion include Random Embedding (REMBO) (Wang et al.,
2016) as well as Variational Auto Encoder (VAE) (Kingma
and Welling, 2014). A data-efficient Bayesian optimization
technique is used for searching in the lower dimensional
space, instead of the original high dimensional parameter
space. The proposed method is able to efficiently identify
the parameters that produce a simulation that most closely
matches the observed ground-truth trajectories of this excit-
ing locomotive platform.

The 2018 AAAI Spring Symposium Series

602

Foundations and Contributions

Two high-level approaches exist for learning robotic tasks
with unknown dynamical models: model-free and model-
based ones. Model-free methods search for a policy that best
solves the task without explicitly learning the system dy-
namics (Sutton and Barto, 1998; Bertsekas and Tsitsiklis,
1996; Kober, Bagnell, and Peters, 2013; Levine and Abbeel,
2014). Model-free methods are accredited with the recent suc-
cess stories of reinforcement learning in video games (Mnih
et al., 2015). For robot learning, a relative entropy policy
search has been used (Peters, Mülling, and Altün, 2010) to
successfully train a robot to play table tennis. The PoWER
algorithm (Kober and Peters, 2009) is another model-free
policy search approach widely used in robotics.

Model-free methods, however, do not easily generalize to
unseen regions of the state-action space. To learn an effective
policy, features of state-actions in learning and testing should
be sampled from distributions that share the same support.
This is rather dangerous in robotics, as poor performance in
testing could lead to irreversible damage.

Model-based approaches explicitly learn the dynamics
of the system, and search for an optimal policy using stan-
dard simulation, planning, and actuation control loops for
the learned parameters. There are many examples of model-
based approaches for robotic manipulation (Dogar et al.,
2012; Lynch and Mason, 1996; Merili, Veloso, and Akin,
2014; Scholz et al., 2014; Zhou et al., 2016), some of which
have used physics-based simulation to predict the effects of
pushing flat objects on a smooth surface (Dogar et al., 2012).
A nonparametric approach was employed for learning the out-
come of pushing large objects (furniture) (Merili, Veloso, and
Akin, 2014). A Markov Decision Process (MDP) has been
applied to modeling interactions between objects; however,
only simulation results on pushing were reported (Scholz et
al., 2014). For general-purpose model-based reinforcement
learning, the PILCO algorithm has been proven efficient in
utilizing a small amount of data to learn dynamical mod-
els and optimal policies (Deisenroth, Rasmussen, and Fox,
2011).

Bayesian Optimization is a popular framework for data-
efficient black-box optimization (Shahriari et al., 2016). In
robotics, some recent applications include learning con-
trollers for bipedal locomotion (Antonova, Rai, and Atkeson,
2016), gait optimization (Calandra et al., 2016) and transfer
policies from simulation to real world (Marco et al., 2017).

This work is based on a model-based approach, which
instead of learning a dynamics model, it utilizes a physics
engine, and concentrates on identifying only the mechanical
properties of the objects instead of recreating the dynamics
from scratch. Furthermore, it utilizes Bayesian optimization
and identifies a process for dealing with high-dimensional
system identification challenges efficiently.

Proposed Approach

This work proposes an online approach for robots to learn
the physical parameters of their dynamics through minimal
physical interaction. Because of the high dimensionality of
the parameter space of the tensegrity robot, even with efficient

optimization method like Bayesian optimization (BO), it
is still challenging to identify all the parameters efficiently.
The overall framework of the model identification process
is first introduced, then the approaches of dimensionality
reduction to decrease the search space of BO in order to
achieve efficient optimization are covered in detail.

Model Identification

For the tensegrity robot, the physical properties of interest
correspond to the density, length, radius, stiffness, damping
factor, pre-tension, motor radius, motor friction, and motor
inertia of the various rigid and tensile elements and actuators.

These physical properties are represented as a D-
dimensional vector θ ∈ Θ, where Θ is the space of all pos-
sible values of the physical properties. Θ is discretized with
a regular grid resolution. The proposed approach returns a
distribution P on discretized Θ instead of a single point θ ∈Θ
since model identification is generally an ill-posed problem.
In other terms, there are multiple models that can explain an
observed trajectory with equal accuracy. The objective is to
preserve all possible explanations for the purposes of robust
planning.

The online model identification algorithm (given in Algo-
rithm 1) takes as input a prior distribution Pt , for time-step
t ≥ 0, on the discretized space of physical properties Θ. Pt
is calculated based on the initial distribution P0 and a se-
quence of observations (x0,μ0,x1,μ1, . . . ,xt−1,μt−1,xt). For
the Tensegrity robot, xt is a state vector concatenating the 3D
centers of all rigid elements, i.e., the rods in the correspond-
ing Figure 1, and μt is a vector of motor torques.

The process consists of simulating the effects of the con-
trols μi on the robot in states xi under various values of param-
eters θ and observing the resulting states x̂i+1, for i = 0, . . . , t.
The goal is to identify the model parameters that make the
outcomes x̂i+1 of the simulation as close as possible to the
real observed outcome xi+1. In other terms, the following
black-box optimization problem is solved:

θ ∗ = argmin
θ∈Θ

E(θ) de f
=

t

∑
i=0

‖xi+1 − f (xi,μi,θ)‖2, (1)

wherein xi and xi+1 are the observed states of the robot at
times i and i + 1, μi is the control that applied at time t,
and f (xi,μi,θ) = x̂i+1, the predicted state at time t +1 after
simulating control μi at state xi using physical parameters θ .

The proposed approach consists of learning the error func-
tion E from a sequence of simulations with different parame-
ters θk ∈ Θ. To choose these parameters efficiently in a way
that quickly leads to accurate parameter estimation, a belief
about the actual error function is maintained. This belief is a
probability measure over the space of all functions E : RD →
R, and is represented by a Gaussian Process (GP) (Rasmussen
and Williams, 2005) with mean vector m and covariance ma-
trix K. The mean m and covariance K of the GP are learned
from data points {(θ0,E(θ0)

)
, . . . ,

(
θk,E(θk)

)}, where θk is
a vector of physical properties of the object, and E(θk) is
the accumulated distance between actual observed states and
states that are obtained from simulation using θk.

The probability distribution P on the identity of the best
physical model θ ∗, returned by the algorithm, is computed

603

Input: State-action-state data {(xi,μi,xi+1)} for
i = 0, . . . , t
Θ, a discretized space of possible values of
physical properties;

Output: Probability distribution P over Θ according to
the provided data;

Sample θ0 ∼ Uniform(Θ); L ← /0; k ← 0;
repeat

lk ← 0;
for i = 0 to t do

Simulate {(xi,μi)} using a physics engine with
physical parameters θk and get the predicted
next state x̂i+1 = f (xi,μi,θk) ;

lk ← lk +‖x̂i+1 − xi+1‖2;
end
L ← L∪{(θk, lk)};
Calculate GP(m,K) on error function E, where

E(θ) = l, using data (θ , l) ∈ L;
Sample E1,E2, . . . ,En ∼ GP(m,K) in Θ;
foreach θ ∈ Θ do

P(θ)≈ 1
n ∑n

j=0 1θ=argminθ ′∈Θ E j(θ ′)
end

θk+1 = argminθ∈Θ P(θ) log
(
P(θ)

)
;

k ← k+1;
until Timeout;

Algorithm 1: Model Identification with Greedy Entropy
Search

from the learned GP as

P(θ) de f
= P

(
θ = arg min

θ ′∈Θ
E(θ ′)

)

=
∫

E:RD→R

pm,K(E)Πθ ′∈Θ−{θ}H
(
E(θ ′)−E(θ)

)
dE

(2)

where H is the Heaviside step function, i.e., H
(
E(θ ′)−

E(θ)
)
= 1 if E(θ ′)≥ E(θ) and H

(
E(θ ′)−E(θ)

)
= 0 other-

wise, and pm,K(E) is the probability of a function E according
to the learned GP mean m and covariance K. Intuitively, P(θ)
is the expected number of times that θ happens to be the
minimizer of E when E is a function distributed according to
GP density pm,K .

Distribution P from Equation 2 does not have a closed-
form expression. Therefore, a Monte Carlo sampling is em-
ployed for estimating P. Specifically, the process samples
vectors containing values that E could take, according to the
learned Gaussian process, in the discretized space Θ. P(θ)
is estimated by counting the fraction of sampled vectors of
the values of E where θ happens to have the lowest value, as
indicated in Algorithm 1.

Finally, the computed distribution P is used to select the
next vector θk+1 to use as a physical model in the simula-
tor. This process is repeated until the entropy of P drops
below a certain threshold, or until the algorithm runs out
of the allocated time budget. The entropy of P is given as
∑θ∈Θ−Pmin(θ) log

(
Pmin(θ)

)
. When the entropy of P is close

to zero, the mass of distribution P is concentrated around a
single vector θ , corresponding to the physical model that

best explains the observations. Therefore, the next vector
θk+1 should be selected such that the entropy of P would de-
crease after adding the data point

(
θk+1,E(θk+1)

)
to train the

GP and re-estimate P using the new mean m and covariance
K in Equation 2.

The Entropy Search method (Hennig and Schuler, 2012)
follows this reasoning and use Monte Carlo again to sample,
for each potential choice of θk+1, a number of values that
E(θk+1) could take according to the GP in order to estimate
the expected change in the entropy of P and choose the pa-
rameter vector θk+1 that is expected to decrease the entropy
of P the most. The existence of a secondary nested process
of Monte Carlo sampling makes this method impractical for
online model identification. Instead, this work proposes a
simple heuristic for choosing the next θk+1. In this method,
called Greedy Entropy Search, the next θk+1 is chosen as the
point that contributes the most to the entropy of P, i.e.,

θk+1 = argmax
θ∈Θ

−P(θ) log
(
P(θ)

)
.

This selection criterion is greedy because it does not antici-
pate how the output of the simulation using θk+1 would affect
the entropy of P. Nevertheless, this criterion selects the point
that is causing the entropy of P to be high. That is, a point
θk+1 with a good chance P(θk+1) of being the real model,
but with a high uncertainty P(θk+1) log

(1
P(θk+1)

)
.

Random Embedding for Model Identification in
the High Dimensional Space

For problems where the space Θ of physical properties has a
high dimension D, the method presented in Algorithm 1 is
not practical because the number of elements in discretized
Θ is exponential in dimension D. This is a common problem
in global search methods (Wang et al., 2016). In fact, it has
been shown that Bayesian optimization techniques do not
perform better than a random search when the dimension of
the search space is too large (10 dimension in the experiment
in (Ahmed, Shahriari, and Schmidt, 2016)). Therefore, Algo-
rithm 1 cannot be directly used for robotic platforms with a
large number of joints and parameters, such as the Tensegrity
robot or compliant dexterous hands.

Dimensionality reduction is a popular solution to the prob-
lem of searching in high-dimensional spaces. This solution is
particularly appealing in the context of this work because we
are more interested in the accuracy of the predicted trajectory
than in identifying the true underlying physical parameters.
Mechanical models of motion tie together several parameters
of an object. For example, in Coulomb’s model, the mass
and the friction of an object are used in a linear function to
predict the motion of a sliding planar object. Therefore, one
can map linearly these two parameters to a single parameter
and still make accurate predictions of the motion.

Random embedding is an efficient and effective dimen-
sionality reduction technique (Wang et al., 2016). Given a
space of parameters Θ with dimension D, we generate a ran-
dom matrix A ∈ RD×d that projects points from Θ ⊂ R

D

to a lower-dimensional space of parameters Ω ⊂ R
d where

d < D. Instead of discretizing Θ, we discretize Ω into a
regular grid and map each point ω ∈ Ω to a point θ in the

604

Figure 2: LEFT: A example of 1D-to-2D projection resulting
in points outside the original domain. RIGHT: REMBO ap-
proaches this issue by projecting the point outside Θ to the
nearest boundary point of Θ.

original high-dimensional space by using A, i.e. θ = Aω .
One can show (Wang et al., 2016) that with probability one,
minθ∈Θ E(θ) = minω∈Ω E(Aω) where E is the error func-
tion in Equation 1. Consequently, we run Algorithm 1 using
discretized Ω as input instead of Θ. We project back the low-
dimensional vectors ω ∈ Ω to original parameter space Θ
using θ = Aω when we need to run the physical simulation
to get the trajectory under a sampled value of ω .

However, For a randomly generated matrix A and point
ω ∈ Ω, the corresponding high-dimensional vector θ = Aω
is not guaranteed to belong to Θ, but could instead lie any-
where within R

D. The simulator may consider θ as invalid if
it is outside of Θ as shown in Fig.2. Moreover, just doing a
rejection sampling does not always work because most of the
points could be rejected for being invalid in some cases. Ran-
dom EMbedding Bayesian Optimization (REMBO) (Wang et
al., 2016) addressed this issue simply by projecting the point
outside Θ to the nearest boundary point of Θ.

Variational Auto Encoder for Model Identification
in the High Dimensional Space

An auto encoder is a neural network that learns to reconstruct
the input by going through a latent space, which is in a lower
dimensional space than the original input space(Vincent et
al., 2010). It has shown to be very useful in unsupervised
learning of low dimensional representations. A variational
auto encoder (VAE) adds an additional constraint that the la-
tent space follows a prior distribution, usually assumed to be
Gaussian (Kingma and Welling, 2014). This additional con-
straint makes the model more useful as a generative model,
as it also learns to generate output from the prior distribution
in addition to reconstruction.

We adapt the VAE and combine it with the Bayesian op-
timization process, as shown in Fig. 3. Firstly, the VAE is
trained with randomly sampled physical parameter data θ to
learn a low dimension embedding α . Once the VAE is opti-
mized, the decoder part is used to project the low dimensional
α back to the original physical parameter space θ . Thus, the
Bayesian optimization process as detailed in Algorithm 1 can

Figure 3: The auto encoder is trained first to learn the latent
low dimensional embedding. Then Bayesian optimization
is performed in this low dimensional space to search for
the optimal parameter. The decoder is used to reconstruct
the original 15 dimensional parameter in order to perform
physical simulation.

Figure 4: Simulation of the Tensegrity robot resulting in
different states when executing the same control for different
parameters.

be done efficiently in the low dimensional space. The decoder
can be seen as a learned non-linear version of the projection
matrix A in REMBO.

Experimental Results

Setup: This experiment aims to identify the 15 parameters
of the T6 model of the Tensegrity SuperBall robot in NASA’s
Tensegrity Robotics Toolkit (NTRT). The complex dynamics
and high dimensionality of the robot make this problem very
hard. Fig. 4 shows an example of the different results of
applying the same control to the robot with 1% difference
in the rod length (one of the 15 parameters). In absence of
access to the real robot, the default values of the T6 model in
NTRT are used as ground-truth. The Guided Policy Search
(GPS) algorithm (Levine and Abbeel, 2014) was used to
discover fast trajectories of several flops through iterative
exploration and refinement (GPS controller).

The Greedy Entropy Search (GES) method is compared
against random search, where random values of the parame-
ters are selected within the ±10% range. Nevertheless, it is
well-known that Bayesian optimization in high dimensions is
difficult due to the exponential growth of the search space. To
deal with this issue, the two dimensionality reduction meth-
ods, REMBO and VAE are used to reduce the dimensionality
of the parameter space from 15 to 5.

605

Figure 5: Test trajectory errors of different methods for the
Tensegrity robot as a function of time budget for the pa-
rameter optimization process. Greedy Entropy Search in the
5-dimensional space using VAE achieves the lowest trajec-
tory error, outperforming random search and Greedy Entropy
Search in the original 15 dimensional space, as well as Greedy
Entropy Search in the 5-dimensional space using REMBO.

The encoder and decoder of the VAE used in the experi-
ment are both two-layer neural networks. The input dimen-
sion of the encoder and the output dimension of the decoder
is 15, which is the dimension of the parameter space. The
latent space is 5 dimensional. Between them is one layer
of 400 dimensions. This dimension is chosen through cross
validation by balancing accuracy and network complexity.
The prior distribution of the latent space in the VAE is as-
sumed to be N(0,1). Based on the three-sigma rule, when
sampling between [−3,3], this interval should cover 99.7%
of the latent space when the VAE is optimized. For REMBO,
each time a random projection matrix is generated to project
the parameters into [0,1].

To train the VAE, 10,000 training trajectories are gener-
ated. These trajectories are generated by running the GPS
controller in the simulator with different physical parame-
ters and adding random noise of up to ±10% to the default
parameter values. This means each trajectory is generated
under slightly different physical parameters.
Results: Fig. 5 shows the average error between the tra-
jectories using the model parameters identified by different
methods and the trajectories generated from the ground-truth
simulator. When optimizing in the original 15-dim. space,
as a data-efficient global optimization method, Bayesian
optimization with Greedy Entropy Search outperformed
random search. Further improvements are achieved by di-
mensionality reduction, making the search more efficient.
Greedy Entropy Search in the 5-dimensional space using
VAE achieves the lowest trajectory error, outperforming the
method using REMBO. This shows that a learned better la-
tent embedding enables more efficient parameter search in
the Bayesian optimization process. A video showing exam-

ples of the Tensegrity robot locomotion can be found on
https://youtu.be/lD31s0c tqM.

Fig. 6 provides the errors for each of the parameter as a
function of time budget for the parameter optimization pro-
cess. Only the combination of Greedy Entropy Search with
VAE achieves close to 1% error for all parameters. Some
parameters may have stronger influence on the robot dynam-
ics. An intelligent way to identify these parameters would be
helpful to reduce the dimensionality of the parameter space
and could be more informative than random embeddings.
This will be a direction for future work.

Conclusion

This work proposes an information and data efficient frame-
work for identifying physical parameters critical for robotic
tasks, such as compliant robot locomotion. The framework
aims to minimize the error between trajectories observed in
experiments and those generated by a physics engine. To
minimize the number of needed experiments, a Greedy vari-
ant of Entropy Search is proposed, which is shown to be
data efficient. To solve high-dimensional challenges, this
work integrates Greedy Entropy Search with a projection
to a lower-dimensional space through random embedding or
learning a latent embedding utilizing variational auto encoder.
The evaluation of the proposed method against alternatives
is favorable both in terms of identifying parameters more
efficiently, as well as resulting in more accurate locomotion
trajectories.

An interesting extension of this work would involve the
identification of controls during the learning process that help
in quickly minimizing the error. This can be a robust control
process, which takes advantage of Bayesian Optimization’s
output in terms of a belief distribution for the identified pa-
rameters, so as to minimize entropy and maximize the safety
of the experimentation process. Furthermore, it is interesting
to compare the generality of the learned models and resulting
control schemes that utilize them against completely model-
free and end-to-end approaches for reinforcement learning
and control.

References

Ahmed, M.; Shahriari, B.; and Schmidt, M. 2016. Do
we need ”harmless” bayesian optimization and ”first-order”
bayesian optimization? In NIPS BayesOPT Workshop.

Antonova, R.; Rai, A.; and Atkeson, C. G. 2016. Sample
efficient optimization for learning controllers for bipedal
locomotion. In Humanoid Robots (Humanoids), 2016 IEEE-
RAS 16th International Conference on, 22–28. IEEE.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific, 1st edition.

Bullet physics engine. [Online]. Available: www.
bulletphysics.org.

Calandra, R.; Seyfarth, A.; Peters, J.; and Deisenroth, M. P.
2016. Bayesian optimization for learning gaits under un-
certainty. Annals of Mathematics and Artificial Intelligence
(AMAI) 76(1):5–23.

606

Figure 6: Each of the fifteen parameter error functions for the Tensegrity robot as a function of time budget for the parameter
optimization process Greedy Entropy Search in the 5-dimensional space using VAE achieves the lowest error, which is less than
1% for all dimensions.

607

Caluwaerts, K.; Despraz, J.; Iscen, A.; Sabelhaus, A.; Bruce,
J.; Schrauwen, B.; and SunSpiral, V. 2014. Design and
control of compliant tensegrity robots through simulation and
hardware validation. Journal of The Royal Society Interface
11(98).
DART physics egnine. [Online]. Available: http://dartsim.
github.io.
Deisenroth, M.; Rasmussen, C.; and Fox, D. 2011. Learn-
ing to Control a Low-Cost Manipulator using Data-Efficient
Reinforcement Learning. In Robotics: Science and Systems
(RSS).
Dogar, M.; Hsiao, K.; Ciocarlie, M.; and Srinivasa, S. 2012.
Physics-Based Grasp Planning Through Clutter. In Robotics:
Science and Systems VIII.
Erez, T.; Tassa, Y.; and Todorov, E. 2015. Simulation tools
for model-based robotics: Comparison of bullet, havok, mu-
joco, ODE and physx. In IEEE International Conference on
Robotics and Automation, ICRA, 4397–4404.
Geng, X.; Zhang, M.; Bruce, J.; Caluwaerts, K.; Vespignani,
M.; SunSpiral, V.; Abbeel, P.; and Levine, S. 2016. Deep re-
inforcement learning for tensegrity robot locomotion. CoRR
abs/1609.09049.
Havok physics engine. [Online]. Available: www.havok.com.
Hennig, P., and Schuler, C. J. 2012. Entropy Search for
Information-Efficient Global Optimization. Journal of Ma-
chine Learning Research 13:1809–1837.
Kingma, D. P., and Welling, M. 2014. Auto-encoding varia-
tional bayes. In ICLR.
Kober, J., and Peters, J. R. 2009. Policy search for motor
primitives in robotics. In Advances in neural information
processing systems, 849–856.
Kober, J.; Bagnell, J. A. D.; and Peters, J. 2013. Reinforce-
ment learning in robotics: A survey. International Journal of
Robotics Research.
Levine, S., and Abbeel, P. 2014. Learning neural network
policies with guided policy search under unknown dynam-
ics. In Advances in Neural Information Processing Systems
(NIPS).
Lynch, K. M., and Mason, M. T. 1996. Stable pushing:
Mechanics, control- lability, and planning. IJRR 18.
Marco, A.; Berkenkamp, F.; Hennig, P.; Schoellig, A. P.;
Krause, A.; Schaal, S.; and Trimpe, S. 2017. Virtual vs.
real: Trading off simulations and physical experiments in
reinforcement learning with bayesian optimization. In 2017
IEEE International Conference on Robotics and Automation,
ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017,
1557–1563.
Merili, T.; Veloso, M.; and Akin, H. 2014. Push-manipulation
of Complex Passive Mobile Objects Using Experimentally
Acquired Motion Models. Autonomous Robots 1–13.
Mirletz, B. T.; Park, I.-W.; Quinn, R. D.; and SunSpiral, V.
2015. Towards bridging the reality gap between tensegrity
simulation and robotic hardware. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
MuJoCo physics engine. [Online]. Available: www.mujoco.
org.
NTRT. NASA tensegrity robotics toolkit (NTRT). https://ti.
arc.nasa.gov/tech/asr/intelligent-robotics/tensegrity/NTRT/.
Peters, J.; Mülling, K.; and Altün, Y. 2010. Relative entropy
policy search. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI 2010), 1607–
1612.
PhysX physics engine. [Online]. Available: www.geforce.
com/hardware/technology/physx.
Rasmussen, C. E., and Williams, C. K. I. 2005. Gaussian
Processes for Machine Learning. The MIT Press.
Scholz, J.; Levihn, M.; Isbell, C. L.; and Wingate, D. 2014.
A Physics-Based Model Prior for Object-Oriented MDPs. In
Proceedings of the 31st International Conference on Machine
Learning (ICML).
Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; and
de Freitas, N. 2016. Taking the human out of the loop: A
review of bayesian optimization. Proceedings of the IEEE
104(1):148–175.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press, 1st
edition.
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; and Man-
zagol, P.-A. 2010. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local de-
noising criterion. Journal of Machine Learning Research
11(Dec):3371–3408.
Wang, Z.; Hutter, F.; Zoghi, M.; Matheson, D.; and de Feitas,
N. 2016. Bayesian optimization in a billion dimensions
via random embeddings. Journal of Artificial Intelligence
Research 55:361–387.
Zhou, J.; Paolini, R.; Bagnell, J. A.; and Mason, M. T. 2016.
A convex polynomial force-motion model for planar sliding:
Identification and application. In 2016 IEEE International
Conference on Robotics and Automation, ICRA 2016, Stock-
holm, Sweden, May 16-21, 2016, 372–377.

608

