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Abstract

An important problem of automated planning is validating if
a plan complies with the planning domain model. Such vali-
dation is straightforward for classical sequential planning but
until recently there was no such validation approach for Hi-
erarchical Task Networks (HTN) planning. In this paper we
propose a novel technique for validating HTN plans that is
based on representing the HTN model as an attribute gram-
mar and using a special parsing algorithm to verify if the plan
can be generated by the grammar.

Introduction

Automated planning deals with the problem of finding a se-
quences of actions to reach a certain goal (Ghallab, Nau, and
Traverso 2004). Actions are specified via preconditions and
postconditions (also called effects) describing propositions
that must be true in the state before action application (pre-
conditions) and that will become true after action application
(postconditions). Hence, action are a formal model of state
transitions and a plan – a sequence of actions - describes a
valid evolution of the world from a given initial state.

To increase efficiency of planning, Hierarchical Task Net-
works (HTN) were proposed to describe sets of actions as
recipes for solving specific tasks (Erol, Hendler, and Nau
1996). HTN models are based on idea of decomposing com-
pound tasks to subtasks until primitive tasks – actions – are
obtained. The decomposition may include extra constraints
describing precedence relations between sub-tasks and re-
quired properties of states (propositions that must hold be-
fore or between certain subtasks). The planning problem is
specified as a goal task that needs to be decomposed to a se-
quence of actions applicable to an initial state, while satisfy-
ing all the task decomposition constraints and all the causal
constraints between the actions. This sequence needs to be a
valid plan in terms of causal constraints between the actions.

An important problem in automated planning is validat-
ing plans with respect to a given domain model. Such vali-
dation is easy for classical sequential planning, where it can
be realised by simulating plan execution (Howey and Long
2003). However, until recently, there was no method to vali-
date HTN plans, that is, to validate if a given plan can indeed
be obtained from the goal task by some decomposition steps.
There exists a recent validation method based on represent-
ing all possible decompositions as a SAT problem (Behnke,

Höller, and Biundo 2017), but this method does not assume
decomposition constraints (except decomposition precondi-
tions that are compiled away to a dummy action). In this
paper we suggest a more general approach that covers HTN
models completely including all decomposition and causal
constraints.

It has already been noted that derivation trees of Context-
Free (CF) grammars resemble the structure of Hierarchical
Task Networks (HTN). This has been used in (Erol, Hendler,
and Nau 1996) to show the expressiveness of planning for-
malisms. Then, there have been some attempts to represent
HTNs as CF grammars or equivalent formalisms (Nederhof,
Shieber, and Satta 2003) but as demonstrated in (Höller et
al. 2014), the languages defined by HTN planning problems
(with partial-order, preconditions and effects) lie somewhere
between CF and context-sensitive (CS) languages. In (Geib
2016), the author presents an approach with a similar in-
tention with the help of Combinatory Categorial Grammars
(CCGs), which are part of a category lying between CF and
CS grammars, the mildly context-sensitive grammars. The
author proposes a single model for both plan recognition and
planning and he also proposes a planning algorithm based
on CCGs. However, it appears that this modelling process is
counter-intuitive as it requires a lexicalization (the hierarchi-
cal structure is contained in the terminal symbols) while the
decomposition approach is more natural in planning. Also,
it is not yet sure if this formalism and its planning tech-
nique can produce the full range of HTN plans. Recently,
a model of HTNs based on attribute grammars has been
proposed (Barták and Maillard 2017). The underlying gram-
mar describes proper task decompositions, while a so called
timeline constraint over the task attributes describes valid
orders of actions based on causal relations. It is the only
model that handles all HTN constraints including interleav-
ing of actions. Though string shuffling used in plan recogni-
tion (Maraist 2017) allows some for of task interleaving, it
is not clear how it maintains the causal constraints.

In this paper, we will use attribute grammars to validate
HTN plans. We will describe how HTN domain model is
represented as an attribute grammar, and for this grammar
we will present a parsing technique that does plan validation.
Note that due to interleaving of actions and presence of extra
constraints, the parsing technique needs to be more general
than classical parsing for CF grammars.
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Background on Planning

In this paper we work with classical STRIPS planning that
deals with sequences of actions transferring the world from a
given initial state to a state satisfying certain goal condition.
World states are modelled as sets of propositions that are true
in those states and actions are changing validity of certain
propositions.

Classical Planning

Formally, let P be a set of all propositions modelling prop-
erties of world states. Then a state S ⊆ P is a set of propo-
sitions that are true in that state (every other proposition
is false). Later, we will use the notation S+ = S to de-
scribe explicitly the valid propositions in the state S and
S− = P \ S to describe explicitly the propositions that are
not valid in the state S.

Each action a is described by four sets of propositions
(B+

a , B−a , A+
a , A

−
a ), where B+

a , B−a , A+
a , A

−
a ⊆ P,B+

a ∩
B−a = ∅, A+

a ∩ A−a = ∅. Sets B+
a and B−a describe positive

and negative preconditions of action a, that is, propositions
that must be true and false right before the action a. Action
a is applicable to state S iff B+

a ⊆ S ∧ B−a ∩ S = ∅. Sets
A+

a and A−a describe positive and negative effects of action
a, that is, propositions that will become true and false in
the state right after executing the action a. If an action a is
applicable to state S then the state right after the action a
will be

γ(S, a) = (S \A−a ) ∪A+
a . (1)

If an action a is not applicable to state S then γ(S, a) is
undefined.

The classical planning problem, also called a STRIPS
problem, consists of a set of actions A, a set of propositions
S0 called an initial state, and disjoint sets of goal proposi-
tions G+ and G− describing the propositions required to be
true and false in the goal state. A solution to the planning
problem is a sequence of actions a1, a2, . . . , an such that
S = γ(...γ(γ(S0, a1), a2), ..., an) and G+ ⊆ S∧G−∩S =
∅. This sequence of actions is called a plan.

Hierarchical Task Networks as Attribute
Grammars

To simplify the planning process, several extensions of the
basic STRIPS model were proposed to include some control
knowledge. Hierarchical Task Networks (Erol, Hendler, and
Nau 1996) were proposed as a planning domain modeling
framework that includes control knowledge in the form of
recipes how to solve specific tasks. The recipe is represented
as a task network, which is a set of sub-tasks to solve a given
task together with the set of constraints between the sub-
tasks. The constraints can be of the following types:

• t1 ≺ t2: a precedence constraint meaning that in every
plan the last action obtained from task t1 is before the
first action obtained from task t2,

• before(U, l): a precondition constraint meaning that in ev-
ery plan the literal l holds in the state right before the first
action obtained from tasks U ,

• after(U, l): a postcondition constraint meaning that in ev-
ery plan the literal l will hold in the state right after the
last action obtained from tasks U ,

• between(U, V, l): a prevailing condition meaning that in
every plan the literal l holds in all the states between the
last action obtained from tasks U and the first action ob-
tained from tasks V .

In HTN, a compound task is solved by decomposing it to a
task network - the connection between the task and the task
network is called a (decomposition) method. The method
can naturally be described as a rewriting rule of an attribute
grammar. Attribute grammars (Knuth 1968) use the same
type of rewriting rules as context-free grammars, but the
grammar symbols may by annotated by attributes connected
by constraints. This makes attribute grammars stronger than
CF grammars in the sense of recognising a large class of
languages.

Let T (
−→
X ) be a compound task with parameters

−→
X and

({T1(
−→
X1), ..., Tk(

−→
Xk)}, C) be a task network, where C are

its constraints. We can encode the decomposition method as
an attribute grammar rule:

T (
−→
X )→ T1(

−→
X1), ..., Tk(

−→
Xk) [C] (2)

The planning problem in HTN is specified by an initial
state (the set of propositions that hold at the beginning) and
by an initial task representing the goal. The compound tasks
need to be decomposed via decomposition methods until
a set of primitive tasks – actions – is obtained. Moreover,
these actions need to be linearly ordered to satisfy all the
constraints obtained during decompositions and the obtained
plan – a linear sequence of actions – must be applicable to
the initial state in the same sense as in classical planning.

If we do planning by application of grammar rewriting
rules, we get a linear sequence of actions (a terminal word
in terms of formal grammars), but this sequence does not
necessarily form a valid plan as the actions from different
tasks may interleave to satisfy the ordering and causal con-
straints (see Figure 1). So the actions obtained by applying
the grammar rules need to be re-ordered to get a valid plan.
The attribute grammars model the valid action orderings via
a global timeline constraint (Barták and Maillard 2017).

To give a particular example of the decomposition rule, let
us assume a task to transfer a container c from one location
l1 to another location l2 by a robot r. To solve this task, we
need to load the container first, then move it to its destination
location, and unload it there. The following rule describes
this decomposition method1:

Transfer1(c, l1, l2, r)→Load-rob(c, r, l1).

Move-rob(r, l1, l2).

Unload-rob(c, r, l2)[C] (3)

1There are several ways to model the task. For example, the
before and after constraints can be omitted as they will be part of
the primitive tasks.
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Figure 1: A task decomposition tree showing interleaving of actions obtained from decompositions of different tasks - denoted
by the bold arc.

where
C = {Load-rob ≺ Move-rob, Move-rob ≺ Unload-rob,

before({Load-rob}, at(r, l1)),
before({Load-rob}, at(c, l1)),
between({Load-rob}, {Move-rob}, at(r, l1)),
between({Move-rob}, {Unload-rob}, at(r, l2)),
between({Load-rob}, {Unload-rob}, in(c, r)),
after({Unload-rob}, at(c, l2)}

The decomposition constraints specify the following restric-
tions:
• the robot and the container must be at the same location
l1 before loading,

• the robot does not change its location between loading
and the start of moving,

• the container stays in the robot between loading and un-
loading,

• the robot stays at the destination location l2 between the
end of moving and the start of unloading,

• the container will be at the destination location l2 after
unloading.

An alternative decomposition method omits the Move-rob
task as it assumes that this task is introduced by decompo-
sition of another compound task. See the task for c2 in Fig-
ure 1. Still, we need to ensure that the robot is at the right
location before unloading, which is done by the constraint
before({Unload-rob}, at(r, l2)). The alternative decompo-
sition rule looks as follows:

Transfer1(c, l1, l2, r)→Load-rob(c, r, l1).

Unload-rob(c, r, l2)

[C] (4)

where
C = {Load-rob ≺ Unload-rob,

before({Load-rob}, at(r, l1)),
before({Load-rob}, at(c, l1)),
before({Unload-rob}, at(r, l2)),
between({Load-rob}, {Unload-rob}, in(c, r)),
after({Unload-rob}, at(c, l2)}

The top task for transferring two containers using the
same robot and between the same locations can be described
using the following decomposition method:

Transfer2(c1, c2, l1, l2, r)→Transfer1(c1, l1, l2, r).

Transfer1(c2, l1, l2, r)

[] (5)

Notice that having the before and after constraints al-
lows us to describe action preconditions and postconditions
as decomposition constraints rather than having them speci-
fied separately. This is done by having a compound task for
each action, for example Load-rob corresponds to the prim-
itive action load-r. This is the corresponding decomposition
method:

Load-rob(c, r, l)→ load-r(c, r, l). [C] (6)

where

C = {before({load-r}, at(r, l)),
before({load-r}, at(c, l)),
after({load-r}, in(c, r)}
after({load-r},¬at(c, l)}

HTN Validation Algorithm

The plan validation problem is a problem reverse to the plan-
ning problem. We have a plan as the input and the problem
is to validate if that plan can be obtained by decomposition
from the goal task. In terms of grammars, it means using the
grammar rules in an analytical way to do parsing.

Recall that the order of actions in the plan does not neces-
sarily correspond to the order of actions obtained by appli-
cation of grammar rules. Hence, during parsing, we ignore
the order of tasks on the right side of grammar rules and
we model the action (task) order explicitly by using indexes
assigned to tasks. Each task will be annotated by two in-
dexes describing the order numbers of the first and the last
actions obtained from task decomposition. For example, the
task Load-rob1,1(c1, r1, l1) from Figure 1, that gives the
action load-r(c1, r1, l1), is annotated by indexes 1,1.

Let us now demonstrate a single parsing step. Assume
that we already parsed the tasks Load-rob1,1(c1, r1, l1),
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Move-rob3,3(r1, l1, l2), and Unload-rob4,4(c1, r1, l2) and
we continue in parsing using the grammar rule (3). The tasks
on the right side of the rule already exist and we can verify
the ordering constraints 1 ≺ 3 and 3 ≺ 4 by comparing the
respective indexes. The result of the parsing step will be a
new parsed task Transfer11,4(c1, l1, l2, r1), where the in-
dexes are taken as minimal and maximal indexes of its sub-
tasks.

We still need to verify the other constraints in the
rule. This will be done by maintaining a timeline for
each task. The timeline is a sequence of slots describ-
ing validity of literals in time steps corresponding to
the task. For every time step, the slot will describe the
literals that hold in the state before the action at that
time (a Pre part) and literals that must hold in the
state right after the action (a Post part). For example,
the task Load-rob1,1(c1, r1, l1) will use a single slot
({at(r1, l1), at(c1, l1)}, {in(c1, r1),¬at(c1, l1)})1, where
the index represents time and the literals are basically pre-
conditions and postconditions of action load-r(c1, r1, l1)
that were encoded as before and after constraints (see the
rule (6)).

During the parsing step, we first merge the timelines for
the subtasks with possible insertion of empty slots for times
not covered by the sub-tasks (slot 2 in our example). Empty
slot does not contain any action, but its Pre part may contain
literals obtained by propagation (see below). Two slots with
the same index can only be merged if (at least) one of them is
empty. This way we ensure that each action is generated ex-
actly once. For example, when merging timelines for tasks
Transfer11,4(c1, l1, l2, r1) and Transfer12,5(c2, l1, l2, r1)
we are merging non-empty slots 1,3,4 for the first task with
non-empty slots 2, 5 of the second task. If the slots cannot
be merged as they both already contain an action, then pro-
cessing of the derivation rule is stopped and the algorithm
continues with the next rule.

After merging the timelines for subtasks we add literals
based on the rule constraints - for before and between con-
straints, the literals are added to the Pre parts of respective
slots; for the after constraints, the literals are added to the
Post parts.

After that, we propagate the literals between the slots.
This propagation goes from left to right, where the liter-
als from the postcondition part are added to the precondi-
tion part of the next slot and, if the slot is not empty (con-
tains some action), the literals in preconditions, that are not
deleted by the action, are added to the precondition part of
the next slot. This basically follows the state transition for-
mula as specified in (1). The right-to-left propagation adds
literals in preconditions to preconditions of the previous slot
provided that the slot is not empty and the literal is not added
by the action in it. The goal of propagation is to keep in-
formation about states up-to-date (notice that propagation
changes only the Pre parts of the slots that describe the
states).

Finally, we verify that the slots are consistent, which con-
sists of checking that no slot contains a literal and its nega-
tion in any of its parts. Table 1 demonstrates this process –
it shows how literals are added to the slots in each step (slot

merging, constraint addition, propagation).
The validation algorithm first transfers each action to a

primitive task with the index corresponding to the order of
the action and with the timeline containing a single slot with
that action and empty Pre and Post parts. Recall, that pre-
conditions and postconditions of actions will be added later
during parsing using the rules of type (6). The literals of the
initial state are added to the Pre part of the first slot (for sim-
plicity, we ignored them in the previous example of a parsing
step). Then the algorithm takes any grammar rule such that
the tasks from its right side are already known and it does
the above described parsing step. This may introduce a new
parsed task. This process is repeated while some new task is
introduced or until a goal task is introduced whose indexes
span the whole plan. If the goal task is found then the plan
is sound, otherwise, the plan is not sound. Note that the al-
gorithm always finishes as there is only a finite number of
compound tasks that can introduced during parsing. We will
now describe the validation algorithm formally.

Data structures

First we will describe the data structures that are used later in
the algorithm. Basically, we will introduce slots, timelines,
and the parsed tasks :

We define the type slot as a tuple
(Pre+,Pre−, a,Post+,Post−) where

• Pre+ is a set of atoms (positive propositions in the state)
• Pre− is a set of atoms (negative propositions in the state)
• a ∈ A ∪ {empty} is an action name (or an empty slot)

• Post+ is a set of atoms (positive postconditions of a)
• Post− is a set of atoms (negative postconditions of a)

To simplify verification of slot/timeline soundness we use
separate sets for positive and negative propositions. Note
also that the sets Pre+,Pre− are not only related to action a
but they will describe the state right before the action. More
precisely, these sets describe the propostions that must hold
in the state, but until all slots are non-empty, the state may
be described only partially (see Table 1).

Then, we define the type subplan that represents a parsed
task T as a tuple (T, b, e, timeline) with
• T being a task name,
• b and e (b ≤ e) being two integers equal to the indexes in

the original plan of the first and last actions in the subplan
generated from T ; this pair shows how much the subplan
generated from T spans over the verified plan,

• timeline being an ordered sequence of (e − b + 1)
elements of the slot type; we have timeline =
{sb, ..., se} ⊆ slots.

The algorithm formally

The validation algorithm is shown in Algorithm 1. At the
beginning, actions in the plan are put individually in the set
subplans (line 2). They are all subplans of size 1. The ini-
tial state is added to the Pre parts of the slot of the first action.
Then, at each iteration the algorithm fires rules in the gram-
mar where all subtasks are elements of subplans. When
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Table 1: The process of building a timeline during parsing the compound task Transfer11,4(c1, l1, l2, r1).
1: load-r(c1, r1, l1) 2: empty 3: move-r(r1, l1, l2) 4: unload-r(c1, r1, l2)
Pre1 Post1 Pre2 Post2 Pre3 Post3 Pre4 Post4

merge at(r1, l1) in(c1, r1) at(r1, l1) ¬at(r1, l1) in(c1, r1) ¬in(c1, r1)
at(c1, l1) ¬at(c1, l1) at(r1, l2) at(r1, l2) at(c1, l2)

constrain at(r1, l1)
in(c1, r1) in(c1, r1)

propagate ¬at(c1, l1) ¬at(r1, l1)

such a rule is found, the precedence constraints are checked
(line 7). Then the timelines of subtasks are merged (line 8)
and before, after, and between constraints from the grammar
rule are applied to this merged timeline (lines 9, 10, and 11).
Preconditions and postconditions are then propagated from
left to right and from right to left (line 12). Finally, the result-
ing timeline is verified (13). If no inconsistency is detected,
then the new parsed task is added to the set subplans so it
can be further used for building a higher-level task. Incon-
sistency means that some atom is both in the positive and in
the negative parts of the state.

The positive exit condition (cf. Algorithm 2) is met when
there is a Goal task in subplans that contains all the ele-
ments of the verified plan P.

If, it is not possible to find a rule that applies to the current
elements of subplans and produces a new subplan, then it
means that the plan P is not valid with regard to the gram-
mar. In other words, the set subplans has not grown during
the execution of the for-loop (lines 6 to 18). At this point, the
algorithm returns false (line 20).

We also include all the sub-procedures for merging the
timelines and for applying the constraints. To simplify no-
tations in the procedures for constraint application (Algo-
rithms 5-7), we use the following notation – if l is a positive
literal p then l+ = {p} and l− = {}; if l is a negative literal
¬p then l+ = {} and l− = {p}.

Soundness

We shall now show that the algorithm correctly recognises
plans that can be derived from a given Goal task and an
initial state.

First, one should realise that the algorithm always fin-
ishes. All sub-procedures clearly finish as they consist of for
loops and if-then-else conditions only. During each iteration
of the main while loop, some new task may be added to the
set of subplans. The input plan is finite and we have only a
finite number of constants so the number of tasks that can be
derived is obviously finite. Hence the while loop must fin-
ish sometime, either when no new task is added (line 20) or
when the Goal task is derived (line 5).

Assume that the algorithm finished successfully (with the
answer true). It means that it found the Goal task that spans
over the full plan (test in Algorithm 2). By reconstructing
how this task was added to the set subplans, we get the
derivation tree (such as the one in Figure 1). We indeed get
a tree as during merging of timelines, two slots can only be
merged if at least one of them is empty. Hence each task

in the tree has exactly one parent. If the same task appears
two (or more) times in the tree then its slots would eventu-
ally merge with themselves, which is not possible (see Algo-
rithm 4). All the constraints used in this derivation (decom-
position) are satisfied as the algorithm verified the prece-
dence constraints and added the literals from the before, af-
ter, and between constraints to the timeline, which is consis-
tent.

Notice that the Post parts of the slots in the timeline con-
tain only the propositions from the after constraints so they
model the effects of actions. The Pre parts (in particular
the Pre+ sets) model the states between the actions and we
shall show that the sequence of states is correct with respect
to the plan. First, each state is sound as it does not contain an
atom and its negation (Pre+ ∩Pre− = ∅). Next, two subse-
quent states Pre+i and Pre+i+1 model a correct state transi-
tion thanks to the propagation:

Pre+i+1 = (Pre+i \Post−i ) ∪ Post+i

Pre−i+1 = (Pre−i \Post+i ) ∪ Post−i

This realises the state transition formula (1). We will show
it for the positive part of the state (the proof is identical for
the negative part). Assume slots i and i+1 with some action
filled in the slot i (the action must appear there eventually
as the final timeline has all slots non-empty). Thanks to left-
to-right propagation, it must hold Post+i ⊆ Pre+i+1 (line 5
of Algorithm 8) and Pre+i \Post−i ⊆ Pre+i+1 (line 8 of Al-
gorithm 8). Thanks to right-to-left propagation, it must hold
Pre+i+1 \Post+i ⊆ Pre+i (line 14 of Algorithm 8). It means
that if a proposition p ∈ Pre+i+1 is not added by the action
(p /∈ Post+i ) then p must already be part of the previous state
(p ∈ Pre+i ). Together, we get:

Pre+i+1 = (Pre+i \Post−i ) ∪ Post+i (7)

Notice that the algorithm works even when no initial state
is provided. Then the final sets Pre+1 and Pre−1 specify the
propositions that must and must not be valid at the beginning
to have a valid plan. If the initial state is provided then it is
propagated through the slots.

In summary, the set of actions in the plan is generated by
the grammar and forms a valid plan.

If the algorithm finishes with the answer false then no
derivation exists as no other task can be parsed. Being the
plan correct, the derivation tree would be reconstructed by
the algorithm as the algorithm finds all the tasks that decom-
pose to any subset of the plan.
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Data: a plan P = (a1, ..., an), initial state InitState, a goal
task Goal, an attribute grammar
G = (Σ, N,P, S, A,C)

Result: a boolean equal to true if the plan can be derived
from the hierarchical structure, false otherwise

1 Function VERIFYPLAN
/* Initialization of the set of

subplans */
2 subplans ← {(ai, i, i, {(∅, ∅, ai, ∅, ∅)i})|ai ∈ P} ;
3 Pre+1 ← InitState+;
4 Pre−1 ← InitState−;
5 while ¬PLANISVALID(subplans,P, Goal) do
6 for each rule R in P of the form

T0 → T1, ..., Tk [≺, pre, post, btw] such that
subtasks = {(Ti, bi, ei, tli)|i ∈ 1..k} ⊆
subplans do

7 verify ≺ from rule R else break;
8 timeline ← MERGEPLANS(subtasks);
9 APPLYPRE(timeline, pre);

10 APPLYPOST(timeline, post);
11 APPLYBETWEEN(timeline, btw);
12 PROPAGATE(timeline);
13 if ∃(Pre+,Pre−, a,Post+,Post−) ∈

timeline,Pre+ ∩Pre− 
=
∅ ∨ Post+ ∩Post− 
= ∅ then

14 break
15 end
16 b = min(Ti,bi,ei,tli)∈subtasks bi,;
17 e = max(Ti,bi,ei,tli)∈subtasks ei;
18 subplans ←

subplans∪{(T0, b, e, timeline)};
19 end
20 if size of subplans has not increased since the

last iteration then
21 return false
22 end

23 end
24 return true

25 end

Algorithm 1: Verification procedure

We showed that the algorithm always finishes. If it returns
true then the plan can be derived from the Goal task. If it
returns false then the plan cannot be derived from the Goal
task. Hence the algorithm validates the plans with respect to
the domain model.

Initial Experiments

In this section we report some initial experiments compar-
ing the performance of the implementation of our algorithm
against the PANDA verifier, described in (Behnke, Höller,
and Biundo 2017). The PANDA verifier validates a plan by
translating it into a SAT formula. This translation requires a
bound, the maximum height of the decomposition that any
candidate for a solution plan can have.

In these experiments we use the Transport domain, ini-
tially introduced in the International Planning Competition
(IPC) of 2008, but without action costs. In this domain, each
vehicle can transport packages between different locations
based on road connections. Our implementation is able to

Data: the set of subplans: subplans, the plan to be
validated P, the goal task Goal

Result: true or false
1 Function PLANISVALID
2 return (∃(Goal, 1, |P |, timeline) ∈

subplans, s.t.
⋃

(_,_,ai,_,_)∈timeline{ai} = P)

3 end

Algorithm 2: The end condition of the valid plan

Data: a set of subplans : subplans
Result: a set of slots newtimeline, the aggregation of the

slots of every subplan
1 Function MERGEPLANS(subplans)
2 lb = min(Ti,bi,ei,timelinei)∈subplans bi;
3 ub = max(Ti,bi,ei,timelinei)∈subplans ei;
4 newtimeline ← {(∅, ∅, empty, ∅, ∅)i|i ∈ lb..ub};
5 for (T, b, e, timeline) ∈ subplans do

6 for sk ∈ timeline, s
′
k ∈ newtimeline do

7 s
′
k ← MERGESLOTS(sk, s

′
k)

8 end

9 end
10 return newtimeline
11 end

Algorithm 3: Merge timelines

parse directly from SHOP2 planner’s (Nau et al. 2003) in-
put files, arguably one of the most used HTN planner. At the
moment, we only support basic HTN syntax from SHOP2,
but we are gradually adding support for many SHOP2 com-
mands and tags. PANDA verifier uses its own input, which
is a PDDL-like representation of HTN.

Our Transport domain description in SHOP2 syntax con-
tains three primitive tasks and three non-primitive tasks.
The description used in PANDA verifier has four primitive
tasks and six non-primitive tasks. The extra primitive task
is a noop action, which in our description is encoded di-
rectly as a non-primitive task. The extra non-primitive tasks
from PANDA’s description are dummy methods that repre-
sent primitive tasks.

We ran 5 different problem instances and collected the
total CPU times. These times include any parsing done by
both approaches, and was calculated from the start to the
end of each validation. To run these experiments we used
a virtual machine (Oracle VM VirtualBox Version 5.1.22)
running an Ubuntu 16.04 LTS, with 4 GB of memory and an
Intel Core i7-4700MQ processor with 4 cores and 8 threads.
Our implementation requires Ruby (we used version 2.3.1),
while the PANDA verifier requires Java (we used OpenJDK
1.8) and the MiniSat solver (we used version 2.2.1).

Table 2 shows the initial results comparing our attribute
grammar approach with PANDA verifier using the transport
domain (with no action cost). The first problem instance (p1)
has a solution plan with 8 actions, and an initial state with
15 ground atoms. Each subsequent problem instance has the
following number of actions and number of ground atoms:
12 and 29; 16 and 45; 19 and 60; 22 and 80. Odd problems
(p1, p3, and p5) had valid solutions, while even problems
(p2, and p4) had not.

487



Data: two slots
s1 = (Pre+1 ,Pre

−
1 , a1,Post

+
1 ,Post

−
1 ), s2 =

(Pre+2 ,Pre
−
2 , a2,Post

+
2 ,Post

−
2 )

Result: merged slots
1 Function MERGESLOTS(s1, s2)
2 if a1 = empty or a2 = empty then

3 Pre+ = Pre+1 ∪Pre+2 ;
4 Pre− = Pre−1 ∪Pre−2 ;
5 Post+ = Post+1 ∪Post−2 ;
6 Post− = Post−1 ∪Post−2 ;
7 a = a1(if a2 = empty) or a2(if a1 = empty);
8 return (Pre+,Pre−, a,Post+,Post−)
9 end

10 break

11 end

Algorithm 4: Merge slots

Data: a set of slot : slots, a set of before constraints
Result: an updated set of slots

1 Function APPLYPRE(slots, pre)
2 for before(U, l) ∈ pre do
3 id = min{bi|Ti ∈ U};
4 Pre+id ← Pre+id ∪ l+;
5 Pre−id ← Pre−id ∪ l−

6 end

7 end

Algorithm 5: Apply before constraints

For these initial experiments, our approach appear to scale
linearly when the solution is valid, but takes a bit more time
if it is not valid, as shown in Figure 2. PANDA verifier had
an exception on p2, because it does not seem to allow invalid
transitions, but instead of ignoring that decomposition path,
it crashes with an exception. And in p5, Panda returned that
the plan was not valid, which was incorrect.
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Figure 2: Transport domain results.

Conclusions

In this paper we proposed an algorithm for validating HTN
plans by using parsing of an attribute grammar describ-
ing the HTN domain model. The algorithm mimics classi-
cal parsing of context-free grammars customised to attribute

Data: a set of slot : slots, a set of after constraints
Result: an updated set of slots

1 Function APPLYPOST(slots, post)
2 for after(U, l) ∈ post do
3 id = max{ei|Ti ∈ U};
4 Post+id ← Post+id ∪ l+;
5 Post−id ← Post−id ∪ l−

6 end

7 end

Algorithm 6: Apply after constraints

Data: a set of slot : slots, a set of between constraints
Result: an updated set of slots

1 Function APPLYBETWEEN(slots, between)
2 for between(U, V, l) ∈ between do
3 s = max{ei|Ti ∈ U}+ 1;
4 e = min{bi|Ti ∈ V };
5 for id = s to e do

6 Pre+id ← Pre+id ∪ l+;
7 Pre−id ← Pre−id ∪ l−

8 end

9 end

10 end

Algorithm 7: Apply between constraints

grammars with the timeline constraint.
The algorithm starts with the plan and applies the decom-

position rules in a reverse order to group actions into tasks.
The decomposition constraints are verified by keeping infor-
mation about propositions that must be true at states before
and after actions. The algorithm stops when it finds a task
that covers the complete plan. Then the plan is valid. The
other way of stopping the algorithm is when no other com-
pound task can be constructed. In such a case the plan does
not correspond to any task. Note, that the plan might still be
a correct sequence of actions but it cannot be obtained by
decomposition of any task.

The major innovation of the proposed technique is that it
is the first approach that covers HTN models fully includ-
ing interleaving of actions and various decomposition con-
straints. In particular, the proposed algorithm is more gen-
eral than an existing SAT-based approach (Behnke, Höller,
and Biundo 2017) in covering precedence, before, between,
and after constraints. The SAT-based approach only covers
specific before constraints (the constraint is applied to the
set of all tasks on the right side of the rule) that must be
encoded as dummy actions. These dummy actions must be
part of the plan to be validated so for the original plan to be
validated one must find proper places, where to insert these
dummy actions, which is not discussed in (Behnke, Höller,
and Biundo 2017).

Furthermore, our initial experiments indicate that convert-
ing HTN models to attribute grammars may provide better
performance results for validating plans, rather than con-
verting to SAT. More experiments with other domains are
needed to ascertain in which types of domain each approach
performs better.

As other planning models such as procedural domain con-
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Data: a set of slots slots
Result: an updated set of slots

1 Function PROPAGATE(slots)
2 lb = min

(Pre+j ,Pre−j ,aj ,Post+j ,Post−j )∈slots j;

3 ub = max
(Pre+j ,Pre−j ,aj ,Post+j ,Post−j )∈slots j − 1;

/* Propagation to the right */
4 for i = lb to ub do

5 Pre+i+1 ← Pre+i+1 ∪Post+i ;
6 Pre−i+1 ← Pre−i+1 ∪Post−i ;
7 if ai 
= empty then

8 Pre+i+1 ← Pre+i+1 ∪(Pre+i \Post−i );
9 Pre−i+1 ← Pre−i+1 ∪(Pre−i \Post+i )

10 end

11 end
/* Propagation to the left */

12 for i = ub downto lb do
13 if ai 
= empty then

14 Pre+i ← Pre+i ∪(Pre+i+1 \Post+i );
15 Pre−i ← Pre−i ∪(Pre−i+1 \Post−i )
16 end

17 end

18 end

Algorithm 8: Propagate

Table 2: Initial results of experiments comparing CPU run
time, in seconds.

transport
domain

p01 p02 p03 p04 p05

CPU
time

CPU
time

CPU
time

CPU
time

CPU
time

Attribute
grammar 0.068 0.084 0.072 0.108 0.084

PANDA
verifier 5.968 - 58.52 13.32 65.56

wrong

trol knowledge (Baier, Fritz, and McIlraith 2007) can be
translated to attribute grammars (Barták and Maillard 2017)
the proposed algorithm can verify plans with respect to these
models too.

Our current implementation of the algorithm uses a
straightforward approach to find rules used for parsing. The
more efficient implementation of the algorithm may exploit
principles of the Rete algorithm (Forgy 1982) used for pro-
duction rule systems.
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