
Learning Abstractions by Transferring
Abstract Policies to Grounded State Spaces

Lawson L. S. Wong
Department of Computer Science, Brown University

Providence, RI 02912, USA
lsw@brown.edu

Abstract

Learning from demonstration is an effective paradigm to
teach specific tasks to robots. However, such demonstrations
often have to be performed on the robot, which is both time-
consuming and often still requires expert knowledge (e.g.,
kinesthetically controlling the joints). It is often easier to
specify tasks at a high level of abstraction, and let the robot
figure out the grounding to the robot/agent space. We consider
how to learn such a mapping. In particular, we consider the
task of learning to navigate on a mobile robot given only an
abstraction of the path and potential landmarks. We cast this
as a learning problem between abstract and robot (grounded)
state spaces and illustrate how this works in several cases.
Through these cases, we see that the “abstract navigation”
task touches on many interesting issues related to abstraction,
and suggest avenues for further investigation.

Introduction

To tackle the high-dimensional complexity of the world and
long-horizon nature of complex tasks, agents need abstrac-
tion, the act of compressing both state and time in service
of certain goals. Much of artificial intelligence has been
devoted to manually endowing agents with abstractions,
such as via symbols (state abstraction) (Dietterich 2000;
Konidaris, Kaelbling, and Lozano-Pérez 2018) and sub-
tasks/options (temporal abstraction) (Sutton, Precup, and
Singh 1999). However, agents that operate in a continual and
lifelong setting will eventually encounter conditions unfore-
seen to the designer, and must come up with its own ab-
stractions. Existing work in learning abstractions, most no-
tably in reinforcement learning, typically require much ex-
perience within the domain, and arguably have not achieved
widespread success. Indeed, one of the challenging aspects
of abstraction is that in the time it takes to induce an abstrac-
tion and learn how to use it effectively, the specific ground /
non-abstract task could already have been solved.

In contrast, humans use abstractions very effectively. For
example, when provided a 2-D map of a new location (e.g.,
Figure 1), people can typically follow the map to reach a
desired destination on the first try, without requiring the nu-
merous episodes of trial and error that reinforcement learn-
ers require. This feat is even more remarkable when con-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Humans can navigate in new places by using ab-
stract 2-D maps, such as by following the walking directions
depicted by the red arrows in the map above, which direct
a person to exit a certain subway exit and cross two roads
to reach an office (red square in the bottom left). They are
able to take abstract policy-related knowledge encoded in
the map, and ground the relevant actions in the real world. If
robotic agents can learn to use existing abstractions, not only
will they be easier to instruct by humans, they may even be
able to produce abstract and interpretable knowledge.

sidering that the real-world looks nothing like the 2-D map:
it is 3-D, is perceived from a first-person perspective (in-
stead of bird’s-eye for maps), and contains many more ob-
jects and other distractors compared to the map itself. Even
so, when encountering these completely new percepts and
‘states’, people can follow where they are on the map and
navigate as desired. Humans have mastered the abstraction
of 2-D maps: from the current ground state in the real world,
they are able to find the corresponding abstract state as a 2-
D point on the map, determine the appropriate next abstract
action within the abstract world, and then ground this action
into physical motion. Furthermore, humans have mastered
the entire class of such 2-D map abstractions; given a new
instance of the abstraction (e.g, a map of a new place), hu-
mans can immediately perform the necessary grounding.

We first formalize the notion of abstraction, then frame
the problem of learning how to use existing abstractions as a
fully supervised, learning-from-demonstration problem. For
the “abstract navigation” task described above, we consider
several classes of possible abstractions, some of which are

The 2018 AAAI Spring Symposium Series

598



S A+

˜S ˜A

fs

π

π̃

fa

Figure 2: Abstraction diagram.

easy to learn, whereas others remain unsolved. Finally, we
discuss directions of ongoing and future investigation.

Related Work

The general problem setup has ties to transfer learning (Tay-
lor and Stone 2009) and learning from demonstration (Ar-
gall et al. 2009). Cobo et al. (Cobo et al. 2014) also ex-
plored learning abstractions from demonstrations, using an
approach based on feature selection and task decomposition.

The formulation of abstractions in this work is inspired
by the pioneering work of Ravindran (Ravindran 2004) and
subsequent work by Abel et al. (Abel, Hershkowitz, and
Littman 2016). Both lines of work analyze theoretical prop-
erties of abstraction in reinforcement learning.

Recently, there has been work on navigation using ab-
stract 2-D maps such as hand-sketched maps (Boniardi et
al. 2015; 2016), floor plans (Gao et al. 2017), and mazes
(Brunner et al. 2018). However, most of these approaches
are specific to 2-D robot/agent navigation.

Model and Problem Formulation

The agent operates in the grounded state space S and action
space A. The objective is to determine a plan or policy π :
S → A that achieves some given task in the world. The
premise of this work is that we are given an abstract solution
for the task, such as a route to follow on an abstract 2-D
map that reaches a desired goal location. Formally, we are
given an abstraction in abstract state and action spaces ˜S, ˜A,
as well as an abstract policy π̃ : ˜S → ˜A.

The abstract policy is a solution for the (grounded) task
if there exist abstraction functions fs : S → ˜S and fa :
˜A → A+ that can produce a grounded policy according to
the diagram in Figure 2. In particular, the requirement is:

π = fa ◦ π̃ ◦ fs (1)

To find the next ground action(s), we first lift the ground
state to the abstract state using fs, apply the given abstract
policy π̃, then ground the resulting abstract action using fa
to an executable primitive action (or action sequence, if there
is temporal abstraction). If π̃ is an abstract solution for the
task, then repeatedly applying this procedure should result
in the agent reaching the goal in its grounded space.

Our goal is to learn the abstraction functions fs and fa,
such that when presented with a new instance of the abstrac-
tion class (e.g., a 2-D map of a new location), the agent can

follow the given abstract solution via Equation 1, i.e., trans-
fer an abstract policy to the agent’s grounded state space.

To learn the abstraction functions, we need training data.
We consider the simplest setting, where paired trajectories in
both ground and abstract spaces are provided. This is a fully-
supervised, learning-from-demonstration setting, where the
agent is shown grounded solutions to various task instances
(e.g., by guiding it through the real world), together with
annotated abstract solutions to the same problems (e.g., by
drawing the route on the 2-D map).

Abstract Navigation

We consider several instances of a problem where the task
is to follow a specified path, given in an abstract space. The
grounded state space in all these cases is the state of the
robotic agent, which includes highly relevant state dimen-
sions such as odometry (noisy estimate of location relative
to its starting position), moderately relevant features such as
detected landmarks, and irrelevant features such as its arms’
joint angles (if it has arms) or its battery level.

Isometric path

In the simplest case, the abstract path is given as a 2-D tra-
jectory that accurately preserves relative lengths and angles,
except possibly in a different global coordinate frame and
scale. (This would be the case if the path was specified in
most popular web mapping services such as Google Maps.)
If the abstract path is also annotated at each point with the
appropriate ground action, which could also be easily in-
ferred from an isometric 2-D solution trajectory, then fa can
be assumed to be the identity function. The paired trajecto-
ries during training give corresponding pairs (s, s̃) of high-
dimensional ground states and 2-D abstract states respec-
tively. Learning fs then becomes a multi-label linear regres-
sion problem (mapping s to s̃), since the ground and abstract
states are related via an affine transformation (in the case
of an isometric abstract path). In simulation, this method
alone is highly effective at ignoring irrelevant features in the
ground state s and handling zero-mean additive noise.

For abstract paths that are not perfect isometries, we need
to learn non-linear regression functions. This is still strictly
within the realm of supervised machine learning, for which
many approaches exist to learn non-linear fs functions.

The issue of orientation

The previous case provided a way to accurately find the ab-
stract (x, y) location on the provided abstract path. How-
ever, the first problem one encounters when implementing
the strategy on a point robot is orientation: if the robot is not
facing in the same direction as the path intended, then fol-
lowing the abstract policy π̃ causes the robot to deviate from
the path. The main issue is that the abstraction is insufficient
to distinguish between the canonical path-following orienta-
tion from other states sharing the same abstract (x, y).

There are several potential ways to fix this. The simplest
is to expand the abstract space to incorporate orientation θ as
well; however, this requires a more complicated abstract pol-
icy to be specified. Alternatively, the burden may be placed

599



on the agent, by formulating each step of the path-following
as a subtask (instead of a primitive action), where the sub-
goal is to return to a canonical orientation. The canonical ori-
entation can be learned during training, or may be required
to be the initial heading of the robot.

More generally, incomplete abstractions are likely to be
encountered, and it would be useful to detect them and make
local corrections, such as by inserting subgoals. This points
to one argument for learning both ground and abstract tran-
sition models, T and ˜T respectively: an incomplete abstrac-
tion will not generally be able to enforce one-step consis-
tency between fs ◦ T and ˜T ◦ fs. Thus transition models
enable error detection in abstraction.

Landmarks

In typical maps, even in the case that the map is an isome-
try, there are additional features such as street names, room
numbers, and other iconic elements such as architecturally
distinct buildings. For example, in Figure 1, various street
names (black font) and store names (blue font) are given
near their respective locations. As humans, our sense of
odometry is likely worse than mobile robots, so we must
rely on these highly distinguishable landmark cues for ro-
bustness. If the robot is provided with detectors that allow it
to detect landmark features, then these detections can simply
be incorporated as additional ground state dimensions, and
we can proceed to learn fs from demonstrations via non-
linear regression. In simulation, we considered landmarks in
the form of ‘color patches’ encountered in local regions of
the world; if the color is confined to a unique region in the
abstract space, these landmarks are highly informative and
can correct for otherwise inaccurate geometric mappings.

Topological path

In the previous case, landmarks provide information that is
redundant with the geometric abstract map. Hence it is pos-
sible to remove the geometric aspects of the abstraction and
simply retain the topological information provided by land-
marks. A path in the space of landmarks can now be rep-
resented as a deterministic finite automaton; for example,
in the case of street names as landmarks, nodes may corre-
spond to streets, and edges with street intersections (with an
appropriate output ground action to perform the correct turn,
if any). Note that this abstraction only allows specifying a
single action to be repeatedly performed between two land-
marks; for example, when on a certain street, the agent can
only move in one direction on the street, until an intersection
is encountered. In this case, uniqueness of landmarks is es-
sential, since they are the only source of information, unless
transition models are also provided to enable tracking.

Richer abstractions

The initial motivation for the abstract mapping task was to
follow an abstract 2-D map, such as the one in Figure 1. Ul-
timately, these maps are typically perceived via vision, and
it would be much easier for a robot to use existing maps
if it can process them in image form, rather than requiring
a manual encoding of the abstract policy π̃. Compared to

previous cases, using the 2-D map in image form is inter-
esting because it is both featurally richer compared to pre-
vious abstractions, while at the same time still much lower-
dimensional with respect to the robot. One possibility for us-
ing this image-based abstraction is to extract features from
it, such as using convolutional neural networks, and to then
learn to map ground states to abstract visual features.

The automaton-based abstraction in the previous case is
also closely related to using natural language instructions
for navigation. For example, “go straight on street A for two
blocks until the intersection with street B, then turn left”
can be represented as an automaton. We can therefore con-
sider using natural language itself as an abstraction, either
by mapping the sequence of instructions to an automaton,
or by directly mapping ground states to abstract linguistic
features, as in the case for images.

Discussion
We considered the problem of learning to use existing ab-
stractions in novel environments, in the context of the prob-
lem of navigation using abstract 2-D maps. The problem
was formulated as a fully-supervised, learning from demon-
stration problem, and several cases of potential abstraction
classes were considered. In the process of analyzing these
cases, various aspects and issues of abstraction were encoun-
tered, and many problems and solutions still lie ahead.

There remains the issue of learning the action abstraction
function fa. This is the problem of temporal abstraction,
which has arguably received greater attention in the field
thus far. One way to consider an abstract action ã is to view
it as a subgoal, which instantiates a local planning problem.
This was a potential strategy used to overcome the lack of
orientation information in the abstract 2-D map.

So far, the problem has only been considered in the fully-
supervised setting. Although this provides the strongest sig-
nal for learning, it also requires significant effort from the
user. One possibility is provide weak supervision through re-
inforcement learning, in the extreme case only providing re-
ward if the correct path is followed. An intermediate regime
would be to still provide demonstrations, but no longer with
ground-abstract state correspondences.

Two cases in the previous section touched upon the utility
of learning transition models. The benefit so far appears to
be increased robustness in determining the correct abstract
state. Transition models are also needed for planning; if the
solution path is not provided, and only an abstract map is
given (which is the case when using a standard map), then
planning in the abstract space will be necessary. This is a
useful extension to the problem considered so far: find an
abstract policy and follow it via the same grounding mecha-
nism, with the assumption that the abstraction is a “faithful”
representation of the world with respect to the task.

The proposed approach may also provide useful theoreti-
cal analysis of abstractions. Since the problem of learning
abstractions has been transformed into one of supervised
learning, we may be able to adapt theoretical tools from
computational learning theory in this more familiar setting,
and characterize the utility of various abstractions. In partic-
ular, to use the given abstraction effectively, we had to learn

600



the abstraction function fs (and eventually fa); the complex-
ity of this learning problem tells us how practical the abstrac-
tion is. If it is difficult to learn fs, then it may not be worth
the extra learning effort for the potential reduction in repre-
sentational complexity. An abstraction may only be useful if
it is an accurate representation of the world with respect to
the task, provides some degree of information compression,
and the abstraction functions are easy to learn.

References

Abel, D.; Hershkowitz, D.; and Littman, M. 2016. Near
optimal behavior via approximate state abstraction. In Inter-
national Conference on Machine Learning.
Argall, B.; Chernova, S.; Veloso, M.; and Browning, B.
2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469–483.
Boniardi, F.; Behzadian, B.; Burgard, W.; and Tipaldi, G.
2015. Robot navigation in hand-drawn sketched maps. In
European Conference on Mobile Robots.
Boniardi, F.; Valada, A.; Burgard, W.; and Tipaldi, G. 2016.
Autonomous indoor robot navigation using a sketch inter-
face for drawing maps and routes. In IEEE International
Conference on Robotics and Automation.
Brunner, G.; Richter, O.; Wang, Y.; and Wattenhofer, R.
2018. Teaching a Machine to Read Maps with Deep Re-
inforcement Learning. In AAAI Conference on Artificial In-
telligence.
Cobo, L.; Subramanian, K.; Isbell, C.; Lanterman, A.; and
Thomaz, A. 2014. Abstraction from demonstration for ef-
ficient reinforcement learning in high-dimensional domains.
Artificial Intelligence 216:103–128.
Dietterich, T. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13:227–303.
Gao, W.; Hsu, D.; Lee, W.; Shen, S.; and Subramanian, K.
2017. Intention-net: Integrating planning and deep learning
for goal-directed autonomous navigation. In Conference on
Robot Learning.
Konidaris, G.; Kaelbling, L.; and Lozano-Pérez, T. 2018.
From skills to symbols: Learning symbolic representations
for abstract high-level planning. Journal of Artificial Intelli-
gence Research 61:215–289.
Ravindran, B. 2004. An Algebraic Approach to Abstraction
in Reinforcement Learning. Ph.D. Dissertation, University
of Massachusetts Amherst.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence 112(1):181–
211.
Taylor, M., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10(1):1633–1685.

601


