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Abstract

This paper describes our approach to integrating rep-
resentation, reasoning, learning, and execution in our
data-mining robots by exploiting micro-clusters to close
the loop of the KDD process model. Based on our sev-
eral kinds of autonomous mobile robots that monitor
humans with Kinect and discover patterns, we are work-
ing on designing data-mining robots, each of which
makes trials and errors in its data observation, data pro-
cessing, pattern extraction, and mobile explorations. In
other words, the robots continuously refine their goals at
the micro-cluster level. We briefly discuss our four re-
search directions, i.e., the balance between the exploita-
tion and the exploration, the use of weak labels, the any-
time algorithm, and the countermeasure to the concept
drift, and describe potential, promising approaches for
some of them.

Data-Mining Robots for Human Monitoring

We have constructed several kinds of autonomous mobile
robots that monitor humans with Kinect and discover pat-
terns. For instance, one to three robots, either a TurtleBot 2
or a hand-crafted robot each with Kobuki, jointly monitor
a walking human, typically with elderly-experience equip-
ment, to discover fall risks by clustering his/her skeletons
(Deguchi et al. 2017; Takayama et al. 2014). Another ex-
ample is a TurtleBot 2 with Kobuki that clusters facial ex-
pressions to discover smiling, yawning, and reading clusters
of a desk worker (Kondo, Deguchi, and Suzuki 2014). This
robot was later used to detect his/her hidden fatigue by clus-
tering classifiers of neutral faces and smiling faces, which
were observed every 30 minutes with their weak class labels
input through a wireless mouse (Deguchi and Suzuki 2015).
Figure 1 shows snapshots of these robots in the respective
series of experiments.

All these robots represent the monitored person with mi-
cro clusters, which are learnt based on procedures similar
to BIRCH, a hierarchical clustering algorithm (Zhang, Ra-
makrishnan, and Livny 1997; Han, Kamber, and Pei 2012).
A micro cluster, which represents a group of similar exam-
ples each described with a set of numerical features, in its
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original form is a triplet (n,v, s), where n, v, and s re-
spectively represent the number of examples in the micro
cluster, the add-sum of the examples in the micro cluster,
and the add-sum of the squared L2-norm of the examples in
the micro cluster (Zhang, Ramakrishnan, and Livny 1997).
This triplet is called a Clustering Feature (CF) vector and
has virtues of enabling an exact, incremental update and a
reproduction of various cluster-wise distances without using
the original examples. We initially adopted this approach to
cluster colors of subimages observed by an autonomous mo-
bile robot (Suzuki, Matsumoto, and Kouno 2012), and then
extended the idea to cluster skeletons (Deguchi et al. 2017;
Takayama et al. 2014), facial expressions (Kondo, Deguchi,
and Suzuki 2014), and linear classifiers (Deguchi and Suzuki
2015). In these applications, an example is represented by a
point in an Euclidean space spanned by the vectors of fea-
tures, e.g., instability features described with skeleton joints
inferred by Kinect (Deguchi et al. 2017; Takayama et al.
2014), action units inferred by Kinect to code emotional fa-
cial expressions (Kondo, Deguchi, and Suzuki 2014), coef-
ficients of a logistic repression classifier to discriminate be-
tween neutral faces and smiling faces (Deguchi and Suzuki
2015).

Currently, we are working on extending our robots to
data-mining robots, each of which makes trials and errors in
its data observation, data processing, pattern extraction, and
mobile explorations. The idea comes from the Knowledge
Discovery in Databases (KDD) process model (Fayyad,
Piatetsky-Shapiro, and Smyth 1996) shown in Figure 2. The
Knowledge Discovery in Databases (KDD) process model
states that a data mining process can be modeled as a series
of several kinds of pre-/post-processing and pattern extrac-
tion. Our application domain is on a TurtleBot with Kobuki
equipped with Kinect ver. 2 that continuously navigates in-
side a 90-m2 room, observes desk workers, report discov-
ered patterns to them, and receives their comments as re-
wards through its mouse. We believe that our data-mining
robots are still goal-oriented, though their goals are unclear
at the pattern level during their operations due to the nature
of the KDD process model.

Exploiting Micro-Clusters to Close The Loop

Our previous robots either neglect the discovered pat-
terns and micro-clusters or use them through static proce-
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Figure 1: Snapshots of our autonomous mobile robots that monitor humans with Kinect and discover patterns. (Top left) Turtle-
Bot 2 with Kobuki clusters facial expressions to discover smiling, yawning, and reading clusters of a desk worker (Kondo,
Deguchi, and Suzuki 2014). (Right) Two TurtleBots 2 with Kobuki jointly monitor a walking human with elderly-experience
equipment to discover fall risks by clustering his/her skeletons (Deguchi et al. 2017; Takayama et al. 2014). (Bottom left)
TurtleBot 2 with Kobuki detects hidden fatigue of a desk worker by clustering classifiers of neutral faces and smiling faces,
which were observed every 30 minutes with their weak class labels input through a wireless mouse (Deguchi and Suzuki 2015).

dures (Deguchi et al. 2017; Takayama et al. 2014; Kondo,
Deguchi, and Suzuki 2014; Deguchi and Suzuki 2015). On
the other hand, our intended data-mining robots closes “The
Loop”, i.e., realizes the trials and errors of the KDD process
model especially by exploiting their results of the pattern
discovery in their data observation and mobile explorations.
In other words, the robots continuously refine their goals at
the micro-cluster level. We have adopted four research di-
rections: the balance between the exploitation and the ex-
ploration, the use of weak labels, the anytime algorithm, and
the countermeasure to the concept drift.

Realizing the balance between the exploitation and the ex-
ploration requires care in our application due to the difficulty
in estimating the interestingness of a discovered pattern in
data mining. Though we have already built naive methods,
e.g., moving to observe from a different angle when the set
of micro clusters reaches a pre-defined degree of stability,
the reward given by humans is not necessarily related to such
diversity and how to estimate the correct, new angle for ob-
servation is unclear. Note that we are mostly faced with sig-
nal data, as the symbol grounding problem is far from being
resolved. Modeling the diversity related to the interesting-
ness would be the next step, though the exploration for new
data would remain hard-wired.

We define a weak label as a piece of information related
with supervisory signal, or the desired output value. It could
be a class label of a bag of examples in the multiple instance
learning, a class label in relevant learning tasks in multi-
task or transfer learning, a (probabilistic) constraint on the

target class labels in classification. See for instance (Mann
and McCallum 2010). In our problem, the reward by a desk
workers is rarely given, even if our robot reports an interest-
ing pattern. We have recently developed a one-class selective
transfer machine for personalized anomalous facial expres-
sion detection (Fujita, Matsukawa, and Suzuki 2018), which
would be useful in both designing how to exploit weak la-
bels and using the detected anomalous facial expressions as
weak labels.

Naturally, our robot has to adopt an anytime algorithm,
e.g., (Ueno et al. 2006), which can return the so-far best
output anytime by using the available resources, especially
the computation time. In BIRCH (Zhang, Ramakrishnan,
and Livny 1997; Han, Kamber, and Pei 2012) and our dis-
covery robots (Deguchi et al. 2017; Takayama et al. 2014;
Kondo, Deguchi, and Suzuki 2014; Deguchi and Suzuki
2015), the micro-clusters are managed by a Clustering Fea-
ture (CF) tree, which may be viewed as a result of hierarchi-
cal clustering (Han, Kamber, and Pei 2012). Handling and
reporting the micro-clusters in an intermediate level of the
CF tree is a naive but natural solution. The closing the loop
problem dictates that this research direction is deeply related
with the first one: the balance between the exploitation and
the exploration. Combined with the other two problems, de-
signing an adequate anytime algorithm for our robots raises
numerous challenges, even if partial solutions exist in the
literature, e.g., (Ivanov, Blumberg, and Pentland: 2001).

Last but not least, our robot has to take a countermea-
sure to the concept drift, which is inherent in data stream
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Figure 2: KDD process model (adopted and modified from (Fayyad, Piatetsky-Shapiro, and Smyth 1996)).

mining (Krempl et al. 2014). The statuses of desk workers
change gradually or abruptly, though our robot platform in-
cluding its batteries and sensors is reliable and can be re-
garded as static. Comparing CF trees (Boubou, Hafez, and
Suzuki 2015) is in fact a nontrivial procedure and thus we
are rather seeking for another approach of managing a set of
micro-clusters.
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