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Abstract

This paper describes the architecture that integrates DALI
MASs (Multi-Agent Systems) and ASP (Answer Set Pro-
gramming) modules for reaching goals in a flexible and
timely way, where DALI is a computational-logic-based fully
implemented agent-oriented logic programming language
and ASP modules includes solvers that allow affordable and
flexible planning capabilities. The proposed DALI MAS ar-
chitecture exploits such modules for flexible goal decompo-
sition and planning, with the possibility to select plans ac-
cording to a suite of possible preferences and to re-plan upon
need. We present an abstract case-study concerning DALI
agents which cooperate for exploring an unknown territory
under changing circumstances in an optimal or at least sub-
optimal fashion. The architecture can be exploited not only
by DALI agents, but rather by any kind of logical agent.

Introduction

Adaptive autonomous agents are capable of adapting to
partially unknown and potentially changing environments
(Knudson and Tumer 2011), (Jiming 2001). This requires
agents to be capable of various forms of commonsense
reasoning and planning over a distributed multi agent ar-
chitecture. A related work based on procedural reason-
ing system and belief desire intention (BDI) architecture
is PROPHETA (Fichera et al. 2017), an object oriented
procedural Python-based multi agent framework with a
declarative language approach, used to control autonomous
robots. Since (Costantini 2011), we advocated agent ar-
chitectures capable of smooth integration of several mod-
ules/components representing different behaviors/forms of
reasoning, possibly based upon different formalisms. There-
fore, the overall agent’s behavior can be seen as the result
of dynamic combination of these behaviors, also in conse-
quence of the evolution of the agent’s environment.

We proposed in particular to adopt Answer Set Pro-
gramming (ASP) modules, where ASP (cf., among many,
(Baral 2003; Leone 2007; Truszczyński 2007) and the refer-
ences therein) is a successful logic programming paradigm
suitable for planning and reasoning with affordable com-
plexity; many efficient implementations of ASP solvers are
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freely available like: CLASP (Gebser et al. 2007), Cmod-
els (Lierler 2005), DLV (Leone et al. 2006b), Smodels (Elk-
abani, Pontelli, and Son 2004) . The DALI agent-oriented
language and framework was invented, designed and de-
veloped in our research group (De Gasperis, Costantini,
and Nazzicone 2014; Costantini and Tocchio 2002; 2004;
Costantini 2015a); the framework has been lately augmented
with a plugin for the invocation of answer set solvers so to
build specific modules. The ASP modules can be exploited
in agents in a variety of ways: for instance in the case of
reasoning about possibility and necessity, and a greater set
of reasoning contexts. We have recently enhanced the in-
tegration by adopting ASP modules for planning purposes,
allowing an agent or a MAS to choose among the various
plans that can be obtained by means of suitable preferences.

In this paper, we show an architecture based on DALI and
ASP modules to cope with complex goals, but that can be
easily generalized to other agent-oriented frameworks; goals
that can take profit from the subdivision into subgoals if one
of the following (or both) conditions as met:

• the instance size of the planning problem to be solved for
reaching the goal is too big for efficient and timely solu-
tion, the instance can be partitioned into sub-problems and
the sub-solutions can and must be re-combined/merged
together;

• the goal naturally splits into sub-goals where
plans can/must be devised separately, and then re-
combined/merged together at a later stage.

The architecture exploits not a single DALI agent but a
distributed MAS (Multi-Agent System), with suitable com-
ponents for generating and executing plans; it allows to dis-
tribute goals and sub-goals while controlling the genera-
tion/exploitation of solutions, and possible (even partial) re-
planning in case of environmental changes.

We introduce an ideal case study to show how DALI
agents can cooperate in order to explore an unknown ter-
ritory, such as what can happen in the real world upon
occurrence of some kind of catastrophic-like disruptive
events (earthquake, fire, flooding, terrorist attack), were geo-
localized information can easily become obsolete in few sec-
onds and rescue planning is needed, no matter what is the
difficulty.

We propose a solution based upon a MAS instead of a
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monolithic software solution because we consider important
that each software component, i.e. agent, should partially re-
tain its autonomy during asynchronous event processing, in
the context of agent-oriented software engineering method-
ologies (Gomez-Sanz and Fuentes-Fernández 2015) . In fact,
in this way each agent can be enriched with high-level rea-
soning/control behaviors that can coexists with the plan-
ning/executing activity. The MAS solution also permits to
distribute the computational effort among cloud comput-
ing facilities and embedded computers so to increase over-
all robustness by means of advanced features such as self-
monitoring and self-diagnostic, as shown in (Bevar et al.
2012). As discussed below the MAS can be based upon a
controller agent which partitions a planning problem, estab-
lished certain features (e.g., related to plan selection), as-
signs tasks of planning, re-planning and plan execution. ASP
modules are meant to be exploited for planning purposes.
Qualitative aspects of the proposed solution consist in: (1)
the general MAS structure, that can be customized in or-
der to cope with real-world problems; (2) the interaction be-
tween the MAS and the ASP module(s); (3) the adoption of
user preferences for choosing among possible plans.

The paper is structured as follows. In the first two sections
we recall ASP and the DALI language and framework. We
then present the proposed MAS architecture, and an abstract
case study. Finally we discuss the proposal and conclude.

Answer Set Programming in a Nutshell
“Answer set programming” (ASP) is a well-established logic
programming paradigm adopting logic programs with de-
fault negation under the answer set semantics, which (Gel-
fond and Lifschitz 1988; 1991) is a view of logic programs
as sets of inference rules (more precisely, default inference
rules). In fact, one can see an answer set program as a set of
constraints on the solution of a problem, where each answer
set represents a solution compatible with the constraints ex-
pressed by the program. For the applications of ASP, the
reader can refer for instance to (Baral 2003; Leone 2007;
Truszczyński 2007). However, planning is among the more
suitable an successful applications of ASP , cf (Son 2017;
Romero, Schaub, and Son 2017) and the references therein,
were planning in ASP is analyzed even under incomplete
information.

Syntactically, a program (or, for short, just “program”) Π
is a collection of rules of the form:

H ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n

where H is an atom, m � 0 and n � 0, and each Li is
an atom. Symbol ← is usually indicated with :- in practi-
cal systems. An atom Li and its negated counterpart notLi

are called literals. The left-hand side and the right-hand side
of the clause are called head and body, respectively. A rule
with empty body is called a fact. A rule with empty head is
a constraint, where a constraint of the form ← L1, ..., Ln.
states that literals L1, . . . , Ln cannot be simultaneously true
in any answer set.

Unlike a conventional logic program, a ASP program may
have several answer sets, each of which represent a consis-
tent solution to given problem and constraints, or may have
no answer set at all, which means that no solution can be

found. Whenever a program has no answer sets, it is said that
the program is inconsistent (w.r.t. consistent). In the case of
planning, each answer set (if any exists) represents a plan.

All solvers provide a number of additional features use-
ful for practical programming, that we will introduce only
whenever needed. Solvers are periodically checked and
compared over well-established benchmarks, and over chal-
lenging sample applications proposed at the yearly ASP
competition (cf. (Calimeri et al. 2012), (Gebser, Maratea,
and Ricca 2016) for recent reports).

The DALI language:

Framework and Applications

DALI (Costantini and Tocchio 2002; 2004) is an Agent-
Oriented Logic Programming language, (Costantini 2015a)
for a comprehensive and updated list of references. A DALI
agent is triggered by several kinds of asynchronous events:
external events, internal, present and past events. A DALI
MAS does not explicitly requires using a global clock mech-
anism, but temporal logic can be implemented inside agents.

External events are syntactically indicated by the postfix
E. Reaction to each such event is defined by a reactive rule,
where the special token :>. The agent remembers to have re-
acted by converting an external event into a past event (post-
fix P). An event perceived but not yet reacted to is called
“present event” and is indicated by the postfix N.

In DALI, actions (indicated with postfix A) may have or
not preconditions: in the former case, the actions are defined
by actions rules, in the latter case they are just action atoms.
An action rule is characterized by the new token :<. Simi-
larly to events, actions are recorded as past actions.

Internal events is what makes a DALI agent agent proac-
tive. An internal event is syntactically indicated by the post-
fix I, and its description is composed of two rules. The first
one contains the conditions (knowledge, past events, pro-
cedures, etc.) that must be true so that the reaction (in the
second rule) may happen. Thus, a DALI agent is able to re-
act to its own conclusions. Internal events are automatically
attempted with a default internal frequency customizable by
means of directives in the agent initialization file, where the
frequency will depend upon the very nature of each such
event, and the degree of criticality for the agent.

The DALI communication architecture implements the
DALI/FIPA protocol (Foundation for Intelligent Physical
Agents 2003), which consists of the main FIPA primitives,
plus few new primitives which are particular to DALI. The
architecture may also include a filter on communication
based on ontologies and forms of commonsense reasoning,
as shown in previous works.

The DALI programming environment at current stage of
development (De Gasperis, Costantini, and Nazzicone 2014)
offers a multi-platform folder environment, built upon Sic-
stus Prolog programs, shell scripts, Python scripts to in-
tegrate external applications, a JSON/HTML5/jQuery web
user interface to integrate into DALI applications, with a
Python/Twisted/Flask web server capable to interact with
A DALI MAS at the backend. We have recently devised
a cloud DALI implementation, reported in (Costantini, De
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Gasperis, and Nazzicone 2017; Costantini et al. 2017). In
fact, as we have since long been convinced of the poten-
tial usefulness of the DALI logical agent-oriented program-
ming language in the cognitive robotic domain, in the above-
mentioned papers we have presented the extensions to the
basic pre-existing DALI implementation with a number of
useful new features, and in particular allow a DALI MAS to
interact with robots over messages buses like ROS, YARP,
Redis event broker. As shown in (Costantini, De Gasperis,
and Nazzicone 2017), the DALI framework has been ex-
tended to “DALI 2.0” by using open sources packages, pro-
tocols and web based technologies. DALI agents can thus be
developed to act as high level cognitive robotic controllers,
and can be automatically integrated with conventional em-
bedded controllers. The web compatibility of the framework
allows real-time monitors and graphical visualizers of the
underline MAS activity to be specified, for checking the in-
teraction between an agent and the related robotic subsys-
tem. The cloud package ServerDALI allows a DALI MAS
to be integrated into any practical environment. In (Costan-
tini et al. 2017) paper we have illustrated the new “Koiné
DALI” framework, where a Koiné DALI MAS can coop-
erate without problems with other MASs, programmed in
other languages, and with object-oriented applications. In
summary, the enhanced DALI can be used for multi-MAS
applications and hybrid multi-agents and object-oriented ap-
plications, and can be easily integrated into preexistent ap-
plications.

The DALI framework has been experimented, e.g., in
applications for user monitoring and training, in emergen-
cies management (like first aid triage assignment), in se-
curity or automation contexts, like home automation or
processes control, and, more generally, in every situation
that is characterized by asynchronous events (either simple
events and/or events that are correlated to other ones even
in complex patterns). An architecture encompassing DALI
agents and called, F&K (Friendly-and-Kind) system (Aielli
et al. 2016) has been proposed for (though not restricted
to) applications the eHealth domain. F&Ks are “knowledge-
intensive” systems, providing flexible access to dynamic,
heterogeneous, and distributed sources of knowledge and
reasoning, within a highly dynamic computational environ-
ment consisting of computational entities, devices, sensors,
and services available in the Internet and in the cloud. As
a suitable general denomination for systems such as F&Ks
we propose “Dynamic Proactive Expert Systems” (DyPES):
in fact, such systems are aimed at supporting human ex-
perts and personnel or human users in a knowledgeable
fashion, so they are reminiscent of the role of traditional
expert systems. However, they are proactive in the sense
that such systems have objectives (e.g., monitoring patients,
managing resources, exploring territories, etc.) that they pur-
sue autonomously, requiring human intervention only when
needed. They are also dynamic, because they are able to ex-
ploit not only a predefined knowledge base: rather, they are
equipped with a number of reasoning modules, and they are
able to locate other such modules, and the necessary knowl-
edge and reasoning auxiliary resources. In fact, DyPESs are
characterized by “Knowledge-intensity”, in the sense that in

general a large amount of heterogeneous information and
data must be retrieved, shared and integrated in order to
reason within the system’s domain. DyPESs can be Cyber-
Physical Systems integrating software and physical compo-
nents (Khaitan and McCalley 2015), and can be able to per-
form Complex Event Processing, i.e., to actively monitor
event data so as to make automated decisions and take time-
critical actions (DALI has been in fact empowered with CEP
capabilities (Costantini 2015b)).

Agents (and in particular robotic agents) have com-
plex goals that may need to be decomposed, either hi-
erarchically or anyway into related subgoals; moreover,
such goals may change in time depending upon the inter-
action with the environment. Prolog-based logical agents
such as DALI agents but also agents written in other
agent-oriented computational-logic-based languages (e.g.,
AgentSpeak (Rao and Georgeff 1991; Bordini and Hübner
2010), GOAL (Hindriks 2009; 2010), 3APL (Dastani et al.
2004; Dastani, van Birna Riemsdijk, and Meyer 2005)) can
devise and execute plans. However, they are not easily able
to decompose goals into subgoals, evaluate (based upon
preferences) alternative plans, and re-plan if needed, pos-
sibly for some subgoals only; implementing such features
within a single agent would in fact make the agent code
heavy to understand and execute.

We have since long equipped DALI with a plugin for in-
voking ASP solvers and thus executing ASP modules. When
this module is used for planning, it would be possible to
choose among the generated plans based upon qualitative
and quantitative user preferences; the preference strategies
implemented so far are: (i) shortest plan; (ii) minimal-cost
plan; (iii) plan including a minimum/maximum number of a
certain kind of actions; we intend to implement plan evalu-
ation based upon preferences on resource consumption, fol-
lowing the principles of (Costantini and Formisano 2010;
2009; Costantini, Formisano, and Petturiti 2010).

Below we propose a DALI MAS architecture aimed at
goal decomposition, sub-goal assignment, planning and re-
planning concerning complex goals.

The ASP-MAS Architecture
In this section we illustrate the features of the proposed ar-
chitecture. The DALI MAS is intended to fulfill the so-called
bounded rationality principle (Gigerenzer 2004), which we
translate that a plan for reaching a goal shall to be de-
vised and executed in a timely manner before a ultimate
Tmax deadline. Consequently, there is a second deadline
TPlanMax < TMax by which a plan has to be computed
and selected, so that the remaining time is sufficient to exe-
cute that plan. Parameters TPlanMax and TMax are indeed
dependent of the problem domain. At the current state of
development they have to be determined by the MAS-ASP
designer and stay constant always during run-time phase.

We also consider the hypothesis that for each problem P
proposed to the MAS, a trivial solution plan can always be
computed in time TPt by using a well tested deterministic
algorithm, such that TPt is a negligible time compared to
TPs, which is the minimum time needed to generate an ac-
ceptable sub-optimal plan.
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Figure 1: DALI ASP-MAS architecture: Coordinator,
Meta-Planner, Planner, Executor agents. The MAS can
be deployed over a cloud computing architecture, thus
distributing and balancing the required computational re-
sources. The ASP module is executed via an external solver,
configurable depending on the required capabilities. The ex-
ecutor agent is supposed to actually execute the plan, possi-
bly working “in the field”, i.e., embedded in a mobile robot
or some other ad-hoc facility or mechanism. Constraints can
be used to codify knowledge about the environment, like
obstacles, target coordinates, resources, depending on the
problem domain.

Thus, given the input set TPlanMax, TMax, G,N,C,
where G is the goal, N is the instance size of the problem to
be solved (if applicable), C is the constraints set which mod-
els the dynamics and knowledge about the environment, the
MAS operates via the following steps, not necessarily in se-
quence, but in parallel whenever it is possible:

(i) Decompose the overall goal into suitable subgoal;

(ii) For each subgoal, generate an a sub-plan within the
TPlanMax deadline;

(iii) Execute the plan within the TMax deadline deploying over
the set of executors;
in case of failure (insufficient time to execute), maximize
the length of the partially executed plan;

(iv) In case of a change of conditions in the environment, i.e.
constraints change, re-plan, possibly limiting this activity
to specific subgoals resulting from the partitioning.

Since each ASP module may possibly find more than one
plan for given (sub-)goal, it is useful (as said before) to apply
a given metrics by which a plan could be preferred to another
one. The proposed DALI ASP-MAS architecture is shown in
Figure 1 and the agent behaviors are here described .

• COORDINATOR agent: this agent synchronizes all the
actions of the MAS and updates the global state of goal
solving. Its task are the following.

(a) Ensure the proper activation of the MAS and overall
self checking.

(b) Interact with the external world and whenever needed
acquire new constraints for the MAS or revise the
present goals.

(c) Control the TPlanMax and TMax deadlines.
(d) Decompose the goal into subgoals.
(e) For each subgoal, instantiate a META-PLANNER

agent, possibly providing as input the preference cri-
terion for plan selection.

(f) receive from each META-PLANNER agent the sub-
plan to be executed up to TPlanMax and deploy the
overall plan to the EXECUTOR agents set, each is
in charge of sub-plan execution within maximum time
TMax − TPlanMax.

(h) If time elapses, or new events occur, cancel the current
running plan and if applicable send a replan indication
to the META-PLANNER.

(h) Logs all events to a log server.
• META-PLANNER agent, whose tasks are the following.
(a) Receive the triggering event from the COORDINA-

TOR with new constraints to start the search for a new
plan.

(b) Generate input set of constraints and specific data
for the PLANNER agent while monitoring its per-
formances. If PLANNER agent does not deliver be-
fore TPlanMax − TPt, cancel the plan request and ask
PLANNER to generate a trivial plan .

(c) Apply plan selection accorded to preferences, either lo-
cal or set by COORDINATOR agent. It also exploits
the given preference criterium in order to select the
plan which is closer to present preferences whenever
the PLANNER returns more than one answer.

(d) If requested by COORDINATOR, ask PLANNER for
re-planning with updated input set of contraints.

• PLANNER agent, which receives as input the time
constraints TPlanMax, TMax, C%, N, F from META-
PLANNER generate the ASP program which then gener-
ates all possible sub-plan via the ASP module, if possible
within the TPlanMax deadline. If more than a single an-
swer is produced by the ASP solver, it returns all available
plans to the META-PLANNER. If no solution exists, it
generates a trivial plan (if possible). The C% parameter
encode knowledge about the sub-optimality of the desired
plan type, which coincide with the Hamiltonian plan at
100%, or refers to sub-optimal plans for lower percent-
ages.

• EXECUTOR: each agent puts into action in the real
world the specific sub-plan provided by the COORDI-
NATOR, if possible within the TMax deadline, and noti-
fies the COORDINATOR upon completion. The execu-
tor agent in general executes plans (also) embodied in a
physical components in a Cyber-Physical System, and/or
by means of robotic elements of various kinds. In Figure
1, EXECUTOR is designated as “field controller” as plan
execution is situated into some environment.
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Summarizing, the final execution made the EXECUTORs
depends on the following information:

• timing parameters, ASP program templates, static con-
straints imposed by the designer

• selected goals and preferences by the user
• the environment model built upon sensors perceptions

which define dynamic constraints
• consistency and self-checking rules in the knowledge base
• available energy and resources, which may also have non

trivial impact on hardening the constraints set.

Since in general this is a hard-NP problem, most probably
only sub-optimal plans can be generated, but with a control-
lable desirable quality by balancing user preferences, accu-
racy, and weak vs. hard constraints. The resulting behavior
should be similar to what a rational human expert would do
in similar circumstances, with the advantage of not being
limited also by human errors due to over fatigue and less
concentration. So the human could dedicate himself to su-
pervise the overall system behavior under less cognitive load
stress and intervene with appropriate common sense reason-
ing when needed, most probably when the system is produc-
ing too many trivial plans.

Abstract Case Study

The ASP-MAS architecture presented above has been in-
spired and motivated by a case-study that has been actually
implemented and experimented, and presented in (Costan-
tini, De Gasperis, and Nazzicone 2015). The overall goal in
the case study is to explore an unknown territory upon oc-
currence of some kind of catastrophic-like disruptive event
(earthquake, fire, flooding, terrorist attack, etc.). The simi-
larity comes from the idea that after such event, most of the
available geo-localized information can became obsolete in
a very short time and important decision have to be made in
order to save lives and/or deliver rescue services. So there is
a contemporary need to re-scan the territory to know were
is possible to engage rescue equipments, and to generate an
actually rescue plan that covers the maximum possible area
were is needed. So there are places were is impossible to
go (i.e. forbidden cells) and places were victims have to be
rescued (i.e. to reach cells).

For simplicity, we have modeled the territory (also called
“area”) as a set of a N ∗ N parts represented as chess-
boards, i.e., squares of cells, where some cells are marked
as unreachable/forbidden, and are therefore considered as
“holes” in the chessboard. This represents the fact that the
agents may be notified by an external authority or by other
sources of the actual impossibility of traversing that loca-
tion because of some kind of obstruction/danger. The forbid-
den/unreachable locations, and their respective constraints
set, can change in time as the scenario evolves.

For the sake of experiments, the EXECUTOR agent is
embodied by a robot explorer/rescuerer 1 that each agent em-
ploys for exploration of the territory; this robot has been rep-

1not necessary a robot, also a human guided ambulance, or a
combination of UAV and human guided vehicles

resented (in the case study) as a chess’ knight piece, which
performs knight leaps. This is to signify that a real robot
(whatever its kind) will in practice have limited possibili-
ties of movement. In this way, the problem of exploration
of a single piece of territory can be modeled as a variant
of the well-known “knight tour with holes” problem, for
which well-known ASP solutions exist. The ultimate ob-
jective would be that of devising an Hamiltonian path, thus
fully exploring the given piece of territory while skipping the
forbidden squares. As however the Hamiltonian path option
may results computationally intractable with reasonable in-
stance size (already from sizes ≥ 8, or 10 using the most re-
cent ASP more efficient solvers ), we resorted to sub-optimal
solutions that the MAS is capable to generate, which adopt
soft constraints in order to visit each square as few times as
possible.

The Knight Tour with holes problem has constituted a
benchmark in recent ASP competitions, aimed at compar-
ing ASP solvers performances. We performed a number of
modifications to the original version (Calimeri and Zhou
2014) concerning: the representation of holes; the objective
of devising a path which, though not Hamiltonian, guaran-
tees a required degree of coverage with the minimum num-
ber of multiple-traversals; simple forms of loop-checking for
avoiding at least trivial loops. For the sake of completeness,
below is the sketch of our solution, formulated for the DLV
ASP solver (Leone et al. 2006a), though it might be easily
reformulated for other solvers. The key modifications to the
base solution are the following.

• We modified the reached constraint, and transformed it
into a soft constraint, so as not to be forced to finding a
Hamiltonian path.

reached(X,Y) :- move(1,1,X,Y).
reached(X2,Y2) :-

reached(X1,Y1), move(X1,Y1,X2,Y2).
:˜ cell(X,Y),

not forbidden(X,Y), not reached(X,Y).

• We added a coverage-satisfaction rule, where
coverage denotes the required degree of coverage
and number forbidden the number of holes, and V is the
instance size, i.e., the chessboard edge. The maximum
possible coverage is 100% of the available cells, i.e.,
M = V ∗V , while the minimum coverage N is computed
in terms of coverage, considering the holes. Suitable
application of the count DLV constraint (Leone et al.
2006a) guarantees the desired coverage.

coverage(95).
number_forbidden(5).
cov(N) :-

N <= #count{X,Y : reached(X,Y)} <= M,
size(V), coverage(Z),
number_forbidden(F),
M = V * V, N2 = M * Z,
N3 = N2 /100, N = N3 - F.

Experimental results have demonstrated the usefulness of
the proposed MAS architecture, that is actually able to effec-
tively cope with real-world instance sizes. The architecture
in this case study works as follows.
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• The COORDINATOR agent partitions the territory that
must be explored into a number of (possibly overlap-
ping) sections (chessboards) of reasonable size (maxi-
mum 10x10 cells), each one to be assigned to a META-
PLANNER instance.

• Each plan to be executed (exploration to be performed) is
assigned to a separate (EXECUTOR)EXLORER agent,
specifically assigned to that territory section. Each in-
stance of the META-PLANNER agent relies upon its own
associated instance of the planner agent.

• different preference policies can possibly be associated
with different sections of the territory to be explored, ac-
cording to directions provided by the user/environment.

• The COORDINATOR will devise re-planning for each
portion of the territory for which the unreachable location
have changed.

Reasonable metrics measure plans returned by the ASP
module in terms of: (i) number of cells that have to be visited
when using coverage, (ii) length of the path, (iii) presence
of loops (when the Hamiltonian constraint is released); (iv)
plan cost, in case there is a specific cost associated to each
cell. Preference criteria can then be defined by selecting one
metric, or by combining different metrics: for instance, a cri-
terium may consist in preferring the shortest path, if it does
not exceed a certain cost.

Concluding Remarks

We have proposed an ASP-MAS architecture for flexible
goal decomposition, plan formation and execution that de-
livers acceptable solution to complex problems under the
“bounded rationality principle”. In real application, a MAS
for each (class of) goal(s) would be designed, implemented
and located into the DALI cloud. In fact, all components of
the MAS will be programmed according to the goal to be
reached, i.e., to the problem to be solved. Each agent that
needs to solve a goal refers to the suitable MAS. As men-
tioned, the DALI framework allows uniform access also to
agents written in other languages/formalisms. So, the pro-
posed solution is not DALI-specific but rather can be gener-
ally adopted.
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