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Abstract

Human-agent teaming is a difficult yet relevant problem do-
main to which many goal reasoning systems are well suited,
due to their ability to accept outside direction and (relatively)
human-understandable internal state. We propose a formal
model, and multiple variations on a multi-agent problem, to
clarify and unify research in goal reasoning. We describe ex-
amples of these concepts, and propose standard evaluation
methods for goal reasoning agents that act as a member of a
team or on behalf of a supervisor.

1 Introduction

An important focus of research on intelligent agents is to
achieve goals quickly and reliably. In recent years, goal rea-
soning researchers have considered the issue of goal change,
a process by which an agent can shift the overall focus of its
activities. This change can be prompted by a nameless out-
side goal source and/or an internal motivation model. In this
work, we advocate modeling the other agents whose goals
an agent attempts to achieve. With this model change, it be-
comes clear that goal reasoning agents are particularly well-
suited to being team players. We define a human-agent team-
ing model and problem, and discuss how future goal reason-
ing research can leverage it.

Research on goal reasoning has investigated multiple
framework abstractions for algorithms and agent architec-
tures (e.g., Goal-Driven Autonomy (Molineaux, Klenk, and
Aha 2010) and the Goal Lifecycle (Roberts et al. 2014)),
but has not focused on common problems. Areas such as
reinforcement learning and automated planning have bene-
fited greatly from such a focus, receiving additional attention
from competitions and comparing results via easy-to-use
benchmarks. While one problem may not suffice to compare
all goal reasoning agents, a small number of common prob-
lems could facilitate comparative publications, and thereby
focus goal reasoning research. This paper focuses on elab-
orating this position, and a candidate formal framework for
describing classes of problems; we expect that future work
will specify concrete representations and initial problems.

In Section 2, we provide a formal description of a general
human-agent teaming problem, along with several important
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variations that are commonly encountered in goal reasoning
research. We then discuss some examples of the concepts
described in Section 3, and discuss useful metrics for com-
parison in Section 4. Finally, in Section 5 we conclude.

2 Models of Goal Reasoning for

Human-Agent Teaming

In recent work, goal reasoning systems have explicitly rea-
soned over the presence of other agents and their goals.
For example, goal reasoning agents may be aware that their
opponent in a real-time strategy game is attempting to de-
feat them (Weber, Mateas, and Jhala 2010; Jaidee, Muñoz-
Avila, and Aha 2013; Dannenhauer and Muñoz-Avila 2015),
that other agents may attack them (Bonnano et al. 2016),
or that other agents may impede them (Cox 2013). Other
work has described explicit exchange of goals and other in-
formation between agents and humans for the purpose of
general collaborative tasks (Geib et al. 2016), control of
unmanned vehicles (Richards and Stedmon 2017), and au-
tonomous community formation (Golpayegani and Clarke
2016). The framework presented here is designed to facil-
itate communication and comparison of agents that work
together in these ways. Concepts described here help with
the modeling of the goals, plans, and motivations of other
agents, especially those that reason over goals themselves.
In the spirit of the successful reinforcement learning prob-
lem (Sutton and Barto 1998), we describe a simple set of
functions and informational items intended to be general
enough to be easily applied and used by all agents that solve
these problems. In order to keep this framework generic and
approachable, we avoid committing to representations and
functions that many agents may not be able to provide.

In our model (Figure 1), a team is situated in an environ-
ment. This team can comprise goal reasoning agents, human
teammates, and other software agents. At each time t (t ∈ T ,
the set of discrete time points at which communications oc-
cur), each teammate observes the environment. The environ-
ment’s state is given by st (st ∈ S, the set of all environment
states), and teammate m (m ∈ M , the set of teammates) re-
ceives an observation omt (omt ∈ O, the set of all observa-
tions). The environment creates individualized observations
for each agent; we model the observation generation pro-
cess as a function obsm : S → O. Teammates can perform
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Figure 1: Human-Agent Teaming Problem Model

an action at each time t, denoted amt (amt ∈ A, the set of
all actions). Changes in the environment are dependent on
these actions as well as the prior state, which we model as
the transition function λ : S ×A|M | → S. This generic rep-
resentation allows for description of a wide variety of envi-
ronments, including those with heterogeneous observability,
exogenous events, and role-based actions; however, it does
not permit continuous time.

Acting as teammates imposes some extra requirements on
an agent. Work in human factors (Klein et al. 2004) has rec-
ognized four distinct requirements for acting as a member of
team. Loosely summarized, they are: (1) agree on common
goals; (2) direct and take direction from other teammates; (3)
predict the behavior of other teammates and act in a way they
can predict; and (4) maintain a common understanding of the
shared environment. To support these requirements, in our
framework teammates communicate via requests and expla-
nations. A teammate m can make a request rm,n

t of another
teammate n ∈ M (rm,n

t ∈ R, the set of all requests). Re-
quests should describe everything agent m desires of agent
n at time t. They are used both for direction and describing
desired changes to common goals. Our model makes no spe-
cific commitment to representation; however, we expect that
goal reasoning agents might directly exchange lists of goals,
preferences, and constraints.

Explanations are intended to communicate information
about an agent’s internal state that motivates that agent’s cur-
rent behavior (e.g., “I moved the box because it was block-
ing my vision”, “My battery is low so my movement range is
limited”). Each teammate m provides an explanation xm,n

t
to each other teammate n (xm,n

t ∈ X , the set of all expla-
nations). These explanations should help other teammates
to understand an agent’s actions and predict their future ac-
tions, to facilitate coordination. One particular area of im-
portance is that an agent should explain why it does or does
not pursue another agent’s request; if an agent does not,
for example, have sufficient resources to succeed, this may
prompt the requester to provide resources or assistance.

Note that the explanations described here are proactive
and not query-based. While query-based explanations are an
important problem, a clean separation of agent-based coor-
dination and decision-making issues from natural-language

issues will permit objective evaluations and comparisons
without human interaction issues. We expect, however, that
an external query interface could be provided that translates
queries into informational requests.

Each teammate m uses the various pieces of informa-
tion they have received over time1 (i.e., observed environ-
ment states, received requests, and received explanations)
along with their sent requests (and, implicitly, their inter-
nal motivations) to guide their action selection policy πm :
O|T | × R|M | × X |M |×|T | × R|M | → A. This policy is ex-
pected to be dynamic, and may be influenced by an agent’s
interactions with its teammates, as well as by the environ-
ment. A typical goal reasoning agent’s policy may involve
considering and reselecting goals and replanning to achieve
them, but the model accommodates various types of policies.

We also model the satisfaction of each teammate, which
describes how well an agent’s desires are being met. Satis-
faction is a function of an agent’s observations (which may
indicate the achievement of desired states), requests made
and received (which help determine the success and failure
of collaboration), and explanations received (which may jus-
tify failures or provide confidence in the current collabora-
tion): satm : O|T |×R|M |×X |M |×|T |×R|M | → R. The sat-
isfaction of the entire team can also be modelled as a func-
tion of each teammate’s satisfaction (f(sat1, . . . , sat|M |));
optimizing this measure incorporates an agent’s own satis-
faction, as well as the estimated satisfaction of each of its
|M | − 1 teammates.

To exemplify how our model could be used in practice,
we describe it in terms of four variations on the human-
agent teaming problem that describe existing goal reasoning
work: single supervisor, silent teammates, silent assistant,
and rebel agent. These examples are not meant to be ex-
haustive, but instead to show that our model can represent
common team structures encountered in goal reasoning re-
search.

2.1 Single Supervisor

Even autonomous goal reasoning agents often receive goals
or tasks from an outside source. In this framework, we model
that source as an agent who makes requests and wants expla-
nations to understand what the agent is doing to fulfill them.
This results in the Single Supervisor version of the human-
agent teaming problem model, shown in Figure 2. In this
version, an agent has a single teammate whose satisfaction
it wishes to maximize, referred to as the supervisor. While
both teammates can sense and act in the environment2, the
superior-subordinate relationship results in requests and ex-
planations being unidirectional (i.e., the agent cannot make
requests of the supervisor and the supervisor does not ex-
plain itself to the agent). As such, the agent’s action selec-
tion policy does not include explanations it has received or

1We assume that, since the requests at the current time contain
the complete request to/from each agent, the policy does not need
to consider past requests. If this is not the case, the action selection
policy can be extended to include past requests.

2Although the supervisor does not need to be situated in the
environment.
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Figure 2: Single Supervisor version of the Human-Agent
Teaming Problem Model

Figure 3: Silent Teammates version of the Human-Agent
Teaming Problem Model

requests it has sent, and only deals with a single teammate
(the policy is simplified to π : O|T | × R → A). The pri-
mary performance measure for this problem is the supervi-
sor’s true satisfaction, measured either at the termination of
interaction, or as an average over time.

2.2 Silent Teammates

In the Silent Teammates version of the human-agent team-
ing problem model (Figure 3), an agent operates as a mem-
ber of a human-agent team, but does not receive any direct
requests from its teammates. This is an unusual teaming ar-
rangement, but necessary when a team is communication-
restricted in some way (possibly to avoid giving an adver-
sary knowledge). In this problem, the agent does not make
requests of other teammates, nor expect explanations from
them. However, the agent still provides an explanation on
demand, to assist teammates in understanding when they
have questions. An example of such a goal reasoning agent
is the Autonomous Squad Member (ASM), an agent control-
ling an unmanned ground vehicle that is embedded in a team
of humans (Gillespie et al. 2015). The ASM agent must infer
and respond to teammates’ desires (e.g., follow along, pro-
vide cover in a fight) without explicit requests. This results
in an action selection policy that inputs only observations:
π : O|T | → A. Similarly, the satisfaction function does
not include requests: satm : O|T | × X |M |×|T | → R. The
primary performance measure in this problem is the team’s
overall satisfaction.

Figure 4: Silent Assistant version of the Human-Agent
Teaming Problem Model

2.3 Silent Assistant

The Silent Assistant version is a multi-agent teaming prob-
lem with no explanation requirement (Figure 4). In this ex-
ample, the agent assists one or more other agents by acting
on their requests, but does not provide explanations, receive
explanations, or make requests of others (i.e., it does not ini-
tiate coordination). An example of such a goal reasoning
agent is the Tactical Battle Manager (TBM), an agent that
controls an unmanned air vehicle while serving as a wing-
man for an aircraft controlled by a human pilot (Floyd et
al. 2017). The TBM operates autonomously but receives ex-
plicit tasks from a human pilot. The lack of communication
from the agent is largely due to the real-time adversarial na-
ture of the domain; goal changes are motivated by dangerous
situations or opportunistic targets, so explanations are not a
primary requirement for this system. Additionally, since the
TBM is a human pilot’s wingman, it serves a subordinate
role and therefore does not generate requests. As such, the
agent’s action selection function and the satisfaction func-
tions do not include explanations or requests from the agent
(π : O|T | × R|M | → A, satm : O|T | × R|M | → R). The
primary performance measure is the team satisfaction func-
tion.

2.4 Rebel Agent

The previous three problem versions we described assume
that the agent’s primary drive is to satisfy teammates’ re-
quests. In the Rebel Agent version (Coman, Gillespie, and
Muñoz-Avila 2015), an agent has internal goals or moti-
vations that differ from (and may conflict with) those of
its teammates. There are two ways in which a rebel agent
can be represented using our model. The simplest method
is to consider the agent as a member of its team but hav-
ing internal motivations that are unknown to its teammates.
Thus, when attempting to maximize team satisfaction it
may prioritize its own satisfaction above the satisfaction of
its teammates (e.g., provide them with different weights).
The ARTUE agent (Molineaux, Klenk, and Aha 2010) is
a rebel agent that receives explicit requests in the form
of goals that it may choose to ignore in order to achieve
goals more important to it. A more complex representa-
tion would be to consider the agent to be a member of
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two teams concurrently (i.e., in Figure 1 the agent would
be at the intersection of two teams). For example, con-
sider an agent that is a member of a corporate catering
team, but is also a member of a vegetarian team. While the
agent contributes toward achieving catering goals (e.g., host
a successful event, maximize profit) it may choose actions
to maximize the vegetarian team’s satisfaction (e.g., mini-
mize the amount of meat used). In the internally motivated
case, the primary performance measure is a team/rebel sat-
isfaction function f(sat1, . . . , sat|M |,mot(sfinal)), where
mot(sfinal) describes how well a rebel’s internal mo-
tivations are satisfied in the true final state of the
environment. In the dual-membership case, the pri-
mary performance measure is a combined function of
two (or potentially more) team satisfaction functions:
fC(f1(sat

1, . . . , sat|M |), f2(sat1, . . . , sat|M |)).

2.5 Assumptions

Consideration of important assumptions is necessary for this
framework. Existence of the transition and observation func-
tions means that environments can be static or dynamic, de-
terministic or probabilistic, and fully or partially observable.
Existence of the policy and satisfaction functions of team-
mates implies that we should also consider whether to as-
sume complete or incomplete knowledge about these func-
tions, and whether information given regarding them (i.e.,
requests and explanations) is perfect or noisy. This cuts
across all problems, and those purporting to address these
problems should state their assumptions regarding these
functions.

3 Examples

Requests and explanations can take many forms includ-
ing natural language utterances, structured text, or low-level
state representations. In this section we provide examples of
requests, explanations, and how they can be used.
Requests: In general, we expect requests to vary in com-
plexity across agents. An example complex request repre-
sentation might be a tuple 〈Savoid, Fprefs, G,C〉, including
constraints Savoid ⊂ S in the form of states to avoid (e.g.,
“battery should never fall below 10%”), preference func-
tions Fprefs : S × S → {True, False} (e.g., “spend as lit-
tle money as possible”), goal states G ⊂ S (with or without
priorities), and context C that describes why achievement of
a particular goal is desired (e.g., the reason for requesting
an agent to cook food could be because (1) ‘supervisor is
hungry’ or (2) ‘supervisor needs to bring food to a dinner
party later’). Context and preferences are especially relevant
for goal reasoning agents, as these can guide which goals
should be considered when goal change is warranted. Addi-
tionally, the reasons for a supervisor’s request of a goal are
likely to be useful in making goal change decisions; for ex-
ample, the context may include a higher-level goal of which
the current request is a subgoal (e.g., a “cook food” goal is a
subgoal of a ¬hungry goal).
Explanations: An important reason for explanations is that
goal reasoning agents may change their local objectives (i.e.,
subgoals) in response to changes in the environment prevent-

ing the accomplishment of the original task. Thus, when-
ever an agent changes its goal, an explanation could be
a tuple 〈gfailed, cfailed, gnew, pnew〉 composed of a failed
goal gfailed, description of state properties that prevent goal
achievement cfailed, new goal gnew, and new plan pnew.
Note that in this framework, explanations are always proac-
tive for simplicity of discussion; to support reactive expla-
nations, an external interface could store this information to
present to a human in answer to specific queries.
A Supervisor Requests Cake: We now describe an exam-
ple of the Single Supervisor problem: first, a human su-
pervisor σ makes a request of a chef agent α to “bake
me a chocolate cake that I can eat when I get home”.
Here, the request rσ,αt is the tuple 〈∅, ∅, {{exists(chocolate-
cake), on(chocolate-cake,table)}}, {hungry(me), wants(me,
chocolate)}〉, which describes a single goal state based on
the original English utterance (translating human utterances
to goals has garnered attention in the human-robot interac-
tion community, see (Briggs, McConnell, and Scheutz 2015)
for an example). No constraints or preferences are provided.

The chef agent α represents its supervisor’s satisfaction
function satσ as a weighted average of (1) the percentage
of his desires that are satisfied in the current state and (2)
the time delay between t (time of request issuance) and ta
(time of request achievement). Based on this, the agent uses
an automated planner to produce a plan that achieves the
requested goal in the shortest possible time. Its policy πα

removes the first action from this plan and executes it; this is
repeated until the following action aαt is known to be inad-
missible based on a state observation oαt . We now describe a
situation that may warrant the agent to consider goal change.

Soon after it begins acting to achieve the goal, the agent
discovers it cannot continue baking because there is no cake
flour in the kitchen. The agent considers adoption of a new
goal acquire(cake-flour), and creates a plan: go to the gro-
cery store, purchase cake flour, and return. However, the plan
to accomplish the new goal would significantly increase the
time required to fulfill the supervisor’s request. Knowing
that the supervisor is hungry and wants chocolate cake, the
chef agent decides to instead switch to a goal to make choco-
late chip pancakes, which seems like a reasonable substitute.
When the supervisor comes home, the agent provides him
with an explanation:

〈{exists(chocolate-cake), on(chocolate-cake, table)},
{available(cake-flour)},
{exists(pancakes), on(pancakes, table)},
{acquire(pancake-mix), acquire(chocolate-chips),

bake(pancakes, pancake-mix, chocolate-chips),
serve(pancakes)}〉.

This explanation serves to communicate why the agent
changed its goal, and what it did instead. If the context of the
supervisor’s request had been a birthday party, the agent α
might have reasoned that the subgoal of going to the grocery
store was warranted.

In general, the issue of how much information must be
exchanged between teammates is unresolved. In this exam-
ple, we assume sufficient knowledge to minimize the need
for communication; for example, the agent knows that the
supervisor’s desires would be met to some degree by choco-
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late chip pancakes. Future work on goal reasoning agents
will need to consider this question.

4 Evaluating Explainable Goal Reasoning

Agents

We expect that typical evaluations will consider a specific
problem and assumptions, and show results on a primary
performance metric in a subset of domains. Results should
be directly comparable with other agents that make the same
assumptions, use the same domain, and use a similar set of
teammates. For this reason, sharing domains as well as ap-
propriate automated teammates (i.e., other software agents
that are part of the team) should promote comparison.

When discussing the four versions of the human-agent
teaming problem, we briefly described the various metrics
that can be used to measure whether the goal reasoning
agent is an effective member of the team. However, in ad-
dition to agent performance there is also the issue of how
well the agent interacts with its human teammates. In these
cases, evaluations should consider whether the provided ex-
planations are appropriate for aiding human collaboration.
We consider metrics for explanation as falling into four cat-
egories: tests of explanation quality, tests of user satisfac-
tion, tests of user comprehension, and tests of user or user-
system team performance. These are based directly on Hoff-
man, Klein and Mueller’s (2017) work on evaluating expla-
nations. Two agents need not use the same explanation rep-
resentation (e.g., natural language, internal state variables)
to be compared.
Tests of Explanation Quality: Experiments that measure
explanation quality can be conducted without humans in the
loop, but often still require a human to assess the results.
These can be compared against explanations generated by
another system or by a human. Some measures of explana-
tion quality are surveyed in Table 1.
Tests of User Satisfaction: These should solicit a user’s
subjective satisfaction with an agent’s performance, typi-
cally using Likert scale questions.
Tests of User Comprehension: These gauge how well ex-
planations generated by an agent improve the accuracy of
a user’s mental model of an agent’s behavior. For explain-

Table 1: Abstract Measures of Explanation Quality
Soundness Plausibility, internal consistency
Appropriate
Detail

Amount of detail and its focus points

Veridicality Does not contradict the ideal model (al-
though there are times when inaccurate
explanations work better for some users
and some purposes)

Usefulness Fidelity to the designer’s or user’s goal
for system use

Clarity Understandability
Completeness Relative to an ideal model
Observability Explains an agent mechanism
Dimensions
of Variation

Reveals boundary conditions

able autonomous agents, experiments could include ques-
tions about the system’s policy to measure user understand-
ing.
Tests of User or User-System Team Performance: These
measure how explanation affects the user’s ability to accom-
plish some task, often an interactive task involving the ex-
plaining agent. A scenario-specific performance metric can
be used to evaluate the team’s performance for this purpose.
To provide a comparison, the same evaluation should be ap-
plied with and without agent-provided explanations, and, if
possible, against a human-only team.

5 Conclusions and Future Work

We have presented new formal models and problem vari-
ations for human-agent teaming, in hopes of promoting
comparisons, competitions, and sharing of evaluation code
among goal reasoning researchers. We have made the case
that explanation is an important and attainable capability
for goal reasoning agents. Finally, we have described useful
evaluations to be used to provide evidence of how well both
goal reasoning agents and human-agent teams, perform.

In future work, we will produce refined models based on
community feedback; furthermore, we will provide concrete
problem instances and representations for use in benchmark-
ing and comparison.
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