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Abstract

We review the psychological notion of affordances and exam-
ine it anew from a cognitive systems perspective. We distin-
guish between environmental affordances and their internal
representation, choosing to focus on the latter. We consider is-
sues that arise in representing mental affordances, using them
to understand and generate plans, and learning them from ex-
perience. In each case, we present theoretical claims that, to-
gether, form an incipient theory of affordance in cognitive
systems. We close by noting related research and proposing
directions for future work in this arena.

1 Introduction and Background
Intelligent agents, both human and artificial, often operate
in the context of an external environment and interact with
entities therein. The agent can interact effectively with these
objects in some ways but not others. For instance, depend-
ing on its manipulators, an agent will be able to grasp, lift,
or throw some items but not different ones. Similarly, it can
sit or recline on some objects but not others. Gibson (1977)
referred to such relationships as affordances, a term that
has been widely adopted in perceptual psychology, human-
computer interaction, and, more recently, AI and robotics.

Gibson viewed affordances as existing in the environ-
ment, but others have used the term, rather differently, to
refer to internalized models of these relations. For example,
Vera and Simon (1993) have proposed that they are encoded
as symbol structures which the agent can use to guide its de-
cision making. They mapped affordances onto both the con-
dition sides of production rules and onto perceptual chunks
to which they refer. More recently, Sahin et al. (2007) and
Zech et al. (2017) have reviewed different formalizations in
robotics, focusing on relations between agents and the envi-
ronment. We will incorporate ideas from each of these ear-
lier efforts in our own analysis.

In this paper we present a high-level theory of affordances
that makes commitments about a number of key issues. Like
Vera and Simon, we focus on internal representations of af-
fordances that describe an agent’s ability for action. How-
ever, we move beyond their treatment to make more spe-
cific statements about the role of affordances in intelligence,
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focusing in turn on issues of representation, performance,
and learning. We propose theoretical postulates about affor-
dances that we feel are promising, but we do not report im-
plemented agents that incorporate these tenets or experimen-
tal evaluations of them, which we reserve for future work.

2 Representing Knowledge of Affordances
Because representation constrains both performance and
learning, we should address first how an intelligent agent
can encode affordances in memory and how they relate to
other cognitive structures. We distinguish between grounded
short-term elements, say a belief that the agent can lift a par-
ticular box, and generic long-term ones, say a predicate and
associated rule that specifies the class of situations in which
lifting is possible. The typical usage of ‘affordance’ focuses
on the grounded version, but we maintain that such elements
are always instances of generic structures, so the primary
representational challenges concern encoding the latter.

We hypothesize two distinct forms of knowledge: con-
cepts that denote classes of objects or relations among them;
and skills that specify the conditions in which multi-step ac-
tivities produce specific outcomes.1 Skills refer to concepts
when describing their conditions and effects, making the lat-
ter structures more basic than the former. This leads natu-
rally to our first theoretical postulate:

• Affordances are concepts that describe the class of situa-
tions and the characteristics of agents for which particu-
lar activities produce specific effects.

In other words, they are reified predicates that link the struc-
tures of objects and the features of agents that can use those
objects to achieve given ends. Affordances take the same
form as other concepts, in that they specify a predicate with
associated arguments and a set of conditions that describe
when they hold. The key difference is that each affordance
concept serves as the sole condition on a skill, indicating
when the latter produces its associated effects. Conceptual
memory also contains other concepts, such as ones that de-
scribe situations which result from a skill’s application.

Note that we view affordances as three-way relationships
among the way an object is used, structural aspects of that

1We have borrowed this disctintion from Li, Stacuzzi, and Lan-
gley’s (2012) ICARUS architecture, but it has roots in psychology.
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object, and characteristics of the agent that uses it. A typical
hammer has a handle with a head on one end, but it cannot
be used to drive a nail or spike unless the agent is strong
enough to lift and swing it. This means that a sledge ham-
mer may afford the hammering activity for some agents but
not others. Some conditions in an affordance concept will be
qualitative, but others will specify numeric relations, such as
whether a tool’s weight is less than what the agent can lift.

We also postulate that many affordances are matters of
degree. Some handles are easier for a given agent to grasp
than others, while some ladders are easier for that agent to
climb. This suggests that logical definitions of concepts, of-
ten assumed in AI, are insufficient. Instead, we propose that:

• Affordances are graded concepts that match situations
to greater or lesser degrees.

For instance, a hammer may be more or less usable by a per-
son depending on the difference between its weight and what
he can lift, among other factors. Probabilistic categories are
one way to support graded behavior, but any approach that
measures distance from a prototype or central tendency will
suffice. Most work in this tradition has assumed attribute-
value notations, but one can also define relational concepts
that match to different degrees (e.g., Choi 2010).

Finally, treating affordances as reified conceptual pred-
icates suggests another representational characteristic that,
we hypothesize, is especially important for describing ex-
tended activities that involve multiple steps:

• Complex affordances are decomposable into elements
that denote different aspects of usability.

For example, a tool has a hammering affordance when an
agent can grasp its handle, lift it upward, and propel its flat
head against the target. We can view each of these elements
as a distinct ‘subaffordance’ that must hold, for a given agent
and to a reasonable degree, to let the agent use a tool for
its intended function. A hammer may be light enough for a
person to lift, but it will not drive home a nail if its handle
is so slippery that it flies out of his grasp or if its head is so
narrow that it misses the target.

3 Using Knowledge of Affordances
Humans and other intelligent agents engage in two broad
classes of knowledge-based cognition. One involves inter-
preting situations and events in the environment, in some
cases the activities of other agents. For instance, we may
observe someone stacking some boxes but appear to have
difficulty lifting one that is too heavy. The simplest variant
is intention recognition, which assigns an agent’s behavior
to some known category, such as picking up a hammer or
stacking a box. A more complex version, plan understand-
ing (e.g., Meadows et al. 2014), infers an agent’s multi-step
plan, including goals it aims to achieve. Our next claim in-
volves two facets of this performance task:

• Affordances enable both proposal of hypotheses during
plan understanding and their evaluation.

To clarify hypothesis creation, suppose that we observe
someone holding a nail and reaching in the direction of two
objects, a hatchet and a screwdriver. The hatchet’s structure,

specifically its handle and the flat side of its head, can be
used to hammer the nail, suggesting this as a candidate in-
tention. The latter occurs because the hatchet’s description,
obtained through perception and inference, matches the af-
fordance conditions associated with hammering a nail. The
screwdriver does not lend itself structurally to this activity,
so it would not produce a comparable hypothesis.

The graded nature of affordances helps during evaluation
of candidate explanations. Given a set of observations, some
intentions and plans will be more plausible than others. For
example, suppose we observe someone in a room picking
up a shoe that has a flat heel. We might hypothesize that he
plans to put the object on his foot or that he plans to use it
to hammer a nail. The shoe can be used for both activities,
but it matches the affordance concept for placing on a foot
much better than it does the one for hammering. We can use
this degree of match in our evaluation of the two hypotheses
and conclude that the first alternative is more plausible.

The second performance task concerns generating activi-
ties that support one’s goals. As before, the simplest cases
involve selection of primitive actions, such as grasping a
glass or lifting a held box. More complicated variants in-
volve chaining sequences of actions into multi-step plans to
achieve the agent’s goals. This suggests another tenet:

• Affordances aid both the proposal of actions during plan
generation and their evaluation.

For instance, suppose we want a nail embedded in a wall and
we have two tools, a hatchet and a screwdriver. We might
use means-ends analysis to propose a hammering activity
that achieves the goal and then realize the hatchet, held in
a particular orientation, satisfies the affordance concept for
hammering, but the screwdriver does not. Or we might use
forward chaining to identify which affordances match the
current situation, retrieve their associated activities, and con-
sider the resulting states. Hammering the nail with the re-
versed hatchet is an applicable action that achieves the goal,
but no screwdriver-related activities are applicable. If the
nail were a screw, the situation would be inverted.

Affordances can also influence evaluation of candidate in-
tentions during the planning process. Suppose, again, that
we want a nail embedded in the wall, and that we have gen-
erated two possible intentions: hammering the nail with a
reversed hatchet and hammering it with a shoe. Both satisfy
the relational conditions of the graded affordance for ham-
mering, but the hatchet would match its specification better
than the shoe. The reasons involve both the relative abilities
for grasping the two tools and their capacities for driving the
nail into the wall even when they are held firmly.

4 Acquiring Knowledge of Affordances
Now that we have discussed the representation and use of
internal affordances, we can turn briefly to their acquistion
from experience. Recall that affordance concepts describe
the conditions under which an activity has a particular effect
for an agent. The AI community has pursued two different
approaches to learning about agents’ activities that suggest
a final theoretical postulate:
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• Primitive affordances are learned inductively whereas
complex affordances are learned analytically.

When an agent first interacts with a new object or situation,
it has little knowledge on which to build. In response, learn-
ing the conditions under which an action will have desired
effects – the affordance concept – is primarily empirical. For
example, this can occur by attempting to grasp different ob-
jects, with induction comparing configurations of successful
and unsuccesful cases (e.g., Shen and Simon 1989).

In contrast, acquisition of complex affordances occurs in
the presence of existing components, enabling use of ana-
lytic methods like those used to determine conditions on
macro-operators (Iba 1989). This involves composing the
conditions of actions not satisfied by the effects of those
that occur before them. For instance, if we have affordance
concepts for grasping a hammer’s handle, lifting it, and hit-
ting a nail with its head, then each of these would appear
as components of a complex affordance for hammering a
nail. Interactions among these elements may require induc-
tive refinement, but creation of an initial concept can occur
analytically based on a single training case. Li et al. (2012)
have adapted this compositional method to acquire defini-
tions for new conceptual predicates, in some cases recursive
ones, that serve as conditions on learned hierarchical skillls.

5 Related Research
Recent years have seen growing interest in internalized af-
fordances within the AI and robotics communities. Horton,
Chakraborty, and St. Amant (2012) review many of these
efforts, which often use visual processing to classify ob-
jects as appropriate for actions. Sahin et al. (2007) and Zech
et al. (2017) also offer insightful surveys of computational
research on the topic. We should examine how our theoreti-
cal claims relate to the growing body of work in this area.

• Affordances are concepts that map relations between
situations and agents on the effects of actions.

A review of the literature reveals that some aspects of this
statement are widely accepted but not others. Treatments
of affordances have always involved mapping objects or
situations onto action relevance, and many efforts to learn
such mappings produce conceptual descriptions or classi-
fiers. However, the notion that affordances involve inter-
actions between features of agents and features of objects
has been much less common. Stoffregen (2003) provides an
early and clear statement of this claim, but his treatment was
informal and, to our knowledge, AI and robotics papers have
only rarely incorporated his insight. We maintain that this
important idea deserves more attention in the computational
literature than it has received.

• Affordances are graded concepts that match situations
to greater or lesser degrees.

Prior researchers have not discussed this idea directly. For
instance, Sarathy and Scheutz (2016) describe an approach
that uses probabilistic rules to infer affordances of objects
for actions. Their framework shares our assumption that af-
fordances are reified concepts, but not that these mental
structures are graded. Zech et al. (2017) consider dynamic

affordances that vary with changing properties of objects,
but they remain Boolean in each case. They also suggest that
agents choose among objects based on appropriateness to a
given outcome, but stop short of proposing degrees of affor-
dance. Of course, probabilistic approaches can predict how
features of the agent and situation affect an action’s chance
of success, but graded affordances can also encode the time,
effort, and difficulty of achieving an objective. Thus, this
claim seems like an important contribution to the literature.

• Complex affordances are decomposable into elements
that denote different aspects of usability.

This idea appears in a few places but has not been explored
in detail. Zech et al. review a few papers that discuss a hi-
erarchy of affordances, including Ellis and Tucker’s (2000)
experimental studies of ‘micro-affordances’ as ‘potentiated
components’ of higher-level activities (e.g., turning a wrist
while reaching for an object). However, computational re-
searchers have generally focused on a single level of anal-
ysis. Therefore, the decomposition of complex affordances
into simpler elements, and the compositional semantics it re-
quires, is a notion that merits substantially more effort than
the community has given it to date.

• Affordances enable the proposal and evaluation of hypo-
theses during plan understanding.

This theoretical tenet is both uncontroversial and supported
in the literature, although few publications state it in these
terms. For instance, Sindlar and Meyer (2010) report a sys-
tem that uses logical reasoning about affordances to generate
hypotheses about a BDI agent’s intentions in a video game,
but also uses numeric scores to evaluate them. In contrast,
Freedman, Jung, and Zilberstein (2015) describe a proba-
bilistic approach that ranks all candidate activities, using in-
formation about tool affordances for evaluation but not hy-
pothesis generation. We encourage researchers who work in
this area to be more explicit about the ways in which affor-
dances guide their systems’ decision making.

• Affordances aid the proposal and evaluation of actions
during plan generation.

This postulate is also supported by publications in the area.
One example comes from Ugur, Oztop, and Sahin (2011),
who use learned object affordances during planning to pro-
pose candidate actions whose conditions match the current
state, but not to evaluate them. In contrast, Boularias et al.
(2015) use information about affordances, acquired by rein-
forcement learning, to evaluate alternative actions by com-
paring the values expected from their application.

• Primitive affordances are learned inductively whereas
complex affordances are learned analytically.

Nearly all computational research in this arena has focused
on acquiring primitive affordances and has relied exclusively
on inductive methods, which is consistent with the first half
of our claim. For instance, Kjellström, Romero, and Kragić
(2010) describe a statistical approach to learning primitive
affordances from observation for use in activity recognition,
whereas Ugur et al. (2011) learn action models from explo-
ration that map continuous features of objects to effect cat-
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egories. Similarly, Boularias et al. (2015) report a system
that estimates the expected values of actions in different sit-
uations, which they view as affordances, from delayed re-
wards. More interesting is recent work by Sridharan, Mead-
ows, and Gomez (2017) that learns primitive affordances in-
ductively and then combines them analytically into compos-
ite affordances on finding that sequences of actions achieve
the agent’s goals. However, this is the only work we have
found that addresses the second half of our final tenet.

In summary, a number of theoretical claims about affor-
dances appear to be novel, while others have received little
attention. Taken together, they offer a new perspective that
can drive work on embodied agents in interesting directions.

6 Concluding Remarks
In the preceding pages, we presented an account of affor-
dances in intelligent systems. Our theory postulated these
structures are reified concepts that specify when skills have
particular effects for given agents, that allow graded mem-
bership, and that can be composed from more basic affor-
dances. An intelligent system can use such structures to hy-
pothesize and evaluate candidate plans that help understand
others’ behavior and achieve its own goals. Finally, such
an agent can acquire affordance concepts from experience
through a mixture of inductive and analytic learning mecha-
nisms. We saw that others have explored some of these ideas,
but that some appear novel, and there is no existing account
of affordances that combines them into a unified theory.

In future research, we should incorporate these ideas into
an implemented system, ideally an existing agent architec-
ture that makes assumptions which are largely consistent
with the new postulates (e.g., Li et al. 2012). We should also
demonstrate the extended architecture on scenarios that il-
lustrate the representation, use, and acquisition of graded,
composite affordances for agents with different abilities. Fi-
nally, we should carry out experiments that test the benefits
of affordance-driven processing over alternative approaches
to intelligent systems. If studies reveal that this leads to bet-
ter explanations, more effective plans, and reduced search,
they will serve as evidence that supports the theory.
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