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Abstract

One of the major drivers for the progress in scalability of au-
tomated planners has been the introduction of the Planning
Domain Definition Language (PDDL) and the International
Planning Competition (IPC). While PDDL provides a con-
venient formalism to describe planning problems, there is a
significant gap with regards to describing domains. Although
PDDL is split into a domain description and a problem de-
scription, the domain description is not enough to specify a
domain completely, as it does not constrain the possible prob-
lems in the domain. For example, there is nothing in the
BLOCKSWORLD PDDL domain description which says that
a block can not be on top of itself in the initial state. In this
position paper, we argue that PDDL domains should be ex-
tended to incorporate a new section which constrains possible
problems in the domain. We argue that such an extension can
be based on first-order logic, and describe several use cases
where this extension might be of use. We also provide some
preliminary empirical results of one way for automatically
extracting such constraints based on mutual exclusion.

Introduction
The domain-independent planning community has made
significant progress scaling up planners, allowing them to
address bigger and more complicated problem instances.
One of the major drivers for this progress has been the in-
troduction of the International Planning Competition (IPC),
with its standard language for describing planning prob-
lems — PDDL, the Planning Domain Definition Language
(McDermott 2000). The PDDL language was further ex-
tended to support additional features, which were intro-
duced in later iterations of the IPC (Fox and Long 2003;
Edelkamp and Hoffmann 2004; Gerevini and Long 2005).

PDDL splits the definition of a planning problem into two
parts: domain and problem. The domain describes the types
of objects this domain deals with, along with schemata for
the predicates used to describe the state of the world and the
operators used to change it. The problem describes the spe-
cific objects in the world in this problem instance, as well as
the initial state and the goal. Typically, a domain in the IPC
is defined by a single PDDL domain description (usually in
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a separate file), and a random problem instance generator1.
Planners are then evaluated based on their performance on a
set of problem instances generated by the problem generator.

While this is a reasonable way to evaluate how well plan-
ners solve planning problems, we claim that it is extremely
difficult to reason over a domain. For example, consider
the well known BLOCKSWORLD domain, which features the
predicate ON(x, y), indicating that block x is directly on
top of block y. We would like to be able to prove that a
block can never be on top of itself. This is fairly easy to
do using techniques such as relaxed reachability. However,
relaxed reachability takes an initial state as input, and the
initial state is only described in the PDDL problem. In fact,
there is nothing preventing us from generating an instance
of BLOCKSWORLD in which ON(A,A) does appear in the
initial state. Thus, in order to be able to prove that a block is
never on top of itself, we would need some explicit descrip-
tion of the fact that a block is never on top of itself in the
initial state of any valid problem instance. Currently, this
knowledge is only implicit from our understanding of the
meaning of the domain.

Previous work (Helmert 2003) has defined a domain as an
infinite set of grounded planning problems. While this defi-
nition is good enough to theoretically analyze the complex-
ity of planning in a domain, it does not consider the issue
of representation. In this position paper, we argue that the
PDDL language needs to be further extended, in order to al-
low for automated reasoning about domains, rather than only
single problem instances. We argue that such an extension
can be based on first-order logic, and describe several use
cases where this extension might be of use. We also provide
some preliminary empirical results where we can identify
what are probably domain-level mutual exclusion (mutex)
groups, providing some automated support for encoding our
suggested constraints.

Background
We begin with a brief review of PDDL. For the full details,
we refer the reader to the various papers describing the dif-
ferent versions of PDDL (McDermott 2000; Fox and Long
2003; Edelkamp and Hoffmann 2004; Gerevini and Long

1Some domains have a separate domain description for each
problem instance. We will address this issue in the final discussion.
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2005). As previously mentioned, PDDL divides the defini-
tion of a planning problem into two parts: the domain, and
the problem, which typically are contained in two different
files. The division allows for the same domain file to be used
with multiple problem files.

A PDDL domain consists of a description of the possible
types of objects in the world. A type t can inherit from an-
other type s, so that all objects with type s are also of type
t. While there is a small controversy regarding whether the
type hierarchy must form a proper tree, or can be a graph,
this issue is irrelevant for the purposes of this paper. The
domain also consists of a set of constants, which are objects
which appear in all problem instances of this domain.

The second part of the domain description is a set of predi-
cates. Each predicate is described by a name and a signature,
consisting of an ordered list of types. Given a set of objects,
we can ground the given predicates, yielding a set of propo-
sitions which describe the state of the world. Note, however,
that these objects are only given as part of the problem de-
scription, and not in the domain description. The domain
also describes a set of derived predicates, which are predi-
cates associated with a logical expression. The idea is that
the value of each derived predicate is computed automati-
cally by evaluating the logical expression associated with it.

Finally, the domain description consists of a set of opera-
tors. Each operator is also described by a name, a signature,
a precondition, and an effect. The signature is now an or-
dered list of named parameters, each with a type. The pre-
condition is a logical formula, whose basic building blocks
are the above mentioned predicates, combined using the
standard first order logic logical connectives. We remark
that the predicates can only be parametrized by the operator
parameters, the domain constraints, or, if they appear within
the scope of a forall or exists statement, by the variable intro-
duced by the quantifier. The effect of the operator is similar,
except that it described a partial assignment, rather then a
formula, and thus can not contain any disjunctions. An op-
erator can also be grounded given a set of objects, yielding
grounded actions.

A PDDL problem is much simpler than the domain. It
consists of a set of objects, each associated with a type (if a
type is not specified, the object is assumed to be of a default
type), and a description of the initial state and the goal. The
initial state is described by the list of propositions (grounded
predicates) that are true in it, where any proposition that is
not listed it assumed to be false. The goal is also a logical
expression, similarly to the precondition of an operator, ex-
cept that it can refer to all objects in the problem instance.
Although the goal can be an arbitrarily complex logical ex-
pression, in most existing planning benchmarks domains, it
is a simply conjunction of positive propositions. In the rest
of this paper, we will assume the goal takes this simple form,
and discuss more complex goals in the conclusion.

As mentioned above, a domain can be grounded given a
set of objects, which are described in the problem. Most
modern planners start by grounding the given planning prob-
lem, and operate on the grounded problem description.
However, if our intention is to reason over a domain, this
approach is not practical, as there is no single problem to

(forall (?x) (not (init (on ?x ?x))))

(forall (?x ?y ?z) (implies
(and (init (on ?y ?x)) (init (on ?z ?x)))
(= ?z ?y)))

(forall (?x) (or
(init (on-table ?x))
(exists (?y) (init (on ?x ?y)))))

(forall (?x) (not (goal (on ?x ?x))))

(forall (?x ?y ?z) (implies
(and (goal (on ?y ?x)) (goal (on ?z ?x)))
(= ?z ?y)))

Figure 1: BLOCKSWORLD Domain Constraints

ground over. In the next section, we present our proposal to
extend PDDL to allow some reasoning over a domain, even
when a problem instance is not given.

Extending PDDL
The heart of our proposed extension to PDDL is to add con-
straints about the problem to the domain description. Fol-
lowing the BLOCKSWORLD example from the introduction,
we could specify that in the initial state of any legal instance
of BLOCKSWORLD, no block is on top of itself.2 We could
then use a lifted version of relaxed reachability analysis to
infer that no block can ever be on top of itself.

Specifically, we propose to add another section to the
PDDL domain description, which will consist of a set of
constraints. Each constraint will be a first order logic state-
ment, which can refer to domain constants, and, of course,
to variables introduced by each quantifier within its scope.
However, the basic building blocks will not be predicates,
but rather predicates perpended with a modal operator, spec-
ifying if this refers to the initial state or the goal. One caveat
is that we can not check whether some proposition if false in
the goal, as the goal is only a partial state. We also explic-
itly allow the usage of the (object) equality predicate. As the
following examples will show, it is quite useful.

The interpretation of these constraints is, naturally, as
constraints over a problem description. We can treat each
problem as specifying a full initial state, and a partial goal
state (as we assume the goal only describes the propositions
we want to be true). Thus, we can evaluate each constraint,
and check whether a given problem satisfies it.

Figure 1 shows how our extension can be applied to
BLOCKSWORLD. The first constraint states that a block is
never on top of itself in the initial state. The second con-
straint states that there can be at most one block on top of
another block (i.e., if y and z are both on top of x, then they
must be the same block). The third constraint states that ev-
ery block must be on top of another block or on the table in

2These are different than the constraints introduced in PDDL
3.0 (Gerevini and Long 2005), which constrain possible plans for
a given problem.
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the initial state. Finally, the last two constraints are similar
to the first two, except they are applied to the goal.

Another example highlights the differences between two
different versions of the LOGISTICS domain: the one used
in the first IPC (1998) and the one used in the second IPC
(2000). Even though the PDDL domain description was
the same in both competitions, LOGISTICS-98 is still much
harder to solve than LOGISTICS-2000. This is because in
the instances generated for second IPC, there was an im-
plicit constraint, that there is exactly one truck in each city.
This constraint is shown in Figure 2.

Use Cases
So far, we have only proposed an extension to PDDL, with-
out explaining why we believe such an extension is useful.
In this section we provide several use cases where our pro-
posed extension can be useful. We remark that we have not
implemented any of these ideas, we simply claim that these
can be the subject of future work.

Learning and Using Domain Control Knowledge
There has been a significant body of work on learning, and
using, domain control knowledge. While a full review of
all the relevant literature is beyond the scope of this pa-
per, we review some influential works in this area. First,
the original STRIPS system had a macro learning compo-
nent, which attempted to generalize successful plans from
one problem to others (Fikes, Hart, and Nilsson 1972). This
is, in fact, an example of explanation based learning (EBL)
(e.g., (Mooney and Bennett 1986; Minton 1990)), where a
system typically look at a single example and attempts to
generalize it.

Another example is the TLPlan planner (Bacchus and Ka-
banza 2000), which was able to exploit manually coded
domain-specific control knowledge expressed in a tempo-
ral logic. Later work tried to learn such rules automatically
(Yoon, Fern, and Givan 2008). In fact, the learning track in
the international planning competition (IPC), introduced in
2011 (Fern, Khardon, and Tadepalli 2011), focuses on learn-
ing domain control knowledge. In the learning track, each
competitor is given access to a PDDL domain file and a ran-
dom problem generator. The competitor is then given a very
long time to produce a domain control knowledge (DCK)
file, which the planner can then use to solve new problems
in the domain, with the intent that the DCK will help the
planner improve its performance.

With the way this track is set up, the best type of guar-
antee that can be provided is a probably approximately cor-
rect (PAC) (Valiant 1984) style guarantee, i.e., that there is a
high probability that the learner has learned something that
is fairly good. However, there is no way to guarantee that
the learned domain control knowledge will work, because
there is no characterization of all possible instances in the
domain, but only a sample of problem instances. Adopting
the proposed extension to PDDL will allow learners to prove
something about what they are learning.

For example, suppose we wanted to make the Fast Down-
ward translator (Helmert 2009) more efficient by learning

what propositions are grouped together into a finite-domain
variable. We might be able to learn, for example, that the
location of a truck in LOGISTICS is always a mutex group,
and can thus be used to create a finite domain variable. In
fact, since the translator looks for invariants in a lifted way in
the domain and then generates possible mutex groups from
invariants which have a single matching fact that is true in
the initial state, it is relatively straightforward to so, as our
preliminary empirical results demonstrate. Of course, this
is only possible if we know that AT(T, L) has exactly one
true proposition for each given truck T in the initial state
— something which is easily described using our proposed
PDDL extension.

Similar invariants can be seen in the BLOCKSWORLD do-
main. The same as trucks, blocks each are represented as
single finite domain variables, which are generated using the
invariants founded in the domain description, and the pred-
icates in the initial state. These mutexes however, are not
enough to randomly generate a “realistic” BLOCKSWORLD
problem. As we mentioned before, a single block can not be
placed on itself, and thus there are no predicates of the form
ON(x, x) in the initial state. However, consider a problem
with two blocks A and B, where block A is placed on top of
block B and block B is placed on top of block A. It is easy
to see that this position satisfies the condition described in
the previous section, but in the same time, it’s both “unreal-
istic” and unsolvable, given the blocks A and B have some
other positions in the goal description. Even more so, this
“ouroboros”3 of a sort can be extended to a cycle of an ar-
bitrary length, making this condition hard to detect without
some recursive logical formula. Thus, our proposed exten-
sion must be able to support recursive formulas, to be able
to express these restrictions.

Generalized Planning
A somewhat similar use case occurs in generalized plan-
ning. In generalized planning, the objective is to generate
a controller which can solve all possible problems from a
given planning domain. Examples of work on generalized
planning include generating plans with loops and branch-
ing (Srivastava, Immerman, and Zilberstein 2011) and fi-
nite state controllers (Bonet, Palacios, and Geffner 2009;
Aguas, Celorrio, and Jonsson 2016). Again, the issue is that
with no formal specification of a domain, it is impossible to
prove that a controller will solve all problems in a domain.

On the other hand, using our proposed PDDL extension,
it is very easy (in theory) to use the following scheme. First,
call a generalized planner on a given set of problems in the
domain of interest. Second, verify if the resulting controller
solves all possible problems in the domain. If the answer is
yes, we have a controller that can solve all problems in the
domain. Otherwise, generate a counter example, add it to
the given set of problems, and repeat. Of course, the prob-
lem of verifying if the given controller works for all possible
problems in the domain, and generating a counter example if
it does not is undecidable (as we can generate a domain that
corresponds to a Turing machine, and each problem corre-

3A serpent eating its own tail.
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(forall (?c - city ?s ?t - truck) (implies
(and (exists (?l - location) (and (init (in-city ?l ?c)) (init (in ?t ?l))))

(exists (?l - location) (and (init (in-city ?l ?c)) (init (in ?s ?l)))))
(= ?s ?t)))

Figure 2: LOGISTICS-2000 Additional Constraint

sponds to a given instance terminating). Nevertheless, ef-
ficient (incomplete) termination analyzers do exist, thus al-
lowing us to hope this idea might work in practice on some
domains of interest.

Almost Automatic Random Problem Generators
When creating a new domain in PDDL, the burden of spec-
ifying which problems are legal and which are not falls to
the problem generator. For example, the problem gener-
ator for BLOCKSWORLD will never generate a problem in
which on(A,A) appears in the initial state. However, this
knowledge is part of the problem generator’s code. On top
of this, the problem generator provides some distribution on
the problems.

With our proposed extension, the first part of the ran-
dom problem generator’s job could be automated. The only
implementation necessary in a random problem generator
would be just the random part — the distribution.

While we believe this would be beneficial by itself, this
also has the potential of enabling bootstrapping approaches
(Arfaee, Zilles, and Holte 2010), where larger and larger
problem instances must be generated. Of course, the issue
of where the distribution comes from is still a critical com-
ponent of such an approach, which is beyond the scope of
our proposed PDDL extension.

State Estimation
Finally, another use case comes from the combination of
planning with real world sensing. Consider, for example,
a camera looking at a BLOCKSWORLD scene. The camera,
along with the image processing and object recognition soft-
ware that looks at its output, will typically produce a set of
real-world coordinates for the position of each block. These
coordinates will typically have some error associated with
them, due to sensor noise, lighting conditions, probabilistic
image processing algorithms, and more.

A state estimator will look at the history of these mea-
surements to produce the symbolic description of the cur-
rent state. Without telling the state estimator that a block
can only be on top of one other block, we might end up with
states containing both on(A,B) and on(A,C). However, if
our state estimator was able to infer mutual exclusion invari-
ants for the domain, it could reject samples which violate
these constraints, yielding more accurate state estimates.

Case Study: Discovering Domain Mutexes
As a first step to demonstrate reasoning over a domain,
rather than over individual problems, we used the Fast
Downward translator (Helmert 2009), in order to examine
invariant candidates in PDDL domains from IPC bench-
marks. As previously mentioned, the Fast Downward trans-
lator identifies lifted invariant candidates looking only at the

PDDL domain. For example, the translator identifies that
for a given truck T , the number of locations L for which
AT(T, L) holds does not increase for any applicable action.
The translator then checks whether this invariant candidate
generates a set of mutexes, by checking if the number of
locations each truck T is at in the initial state is 1 or less.

In this case study, we used the invariants discovered by
the Fast Downward translator for each domain. For each in-
variant, we checked whether it always led to mutexes in all
instantiations of the invariant in all problems. If so, then it
is likely safe to add a problem constraint derived from this
invariant to the domain. However, without an explicit exten-
sion to PDDL, we can never know that this is a true lifted
mutex, or whether the random problem generator just hap-
pened to only generate problems where this invariant hap-
pened to lead to mutexes.

Experimental Results
For our experiment we used the International Planning Com-
petition benchmarks (IPC‘98 – IPC‘11), from which we ex-
cluded all the benchmarks that have more than one domain
description file. In the relevant benchmarks we count the in-
variant candidates extracted by the Fast Downward transla-
tor, and check which of those invariant lead to mutex groups,
and which did not (due to the fact that the number of initial
state propositions participating in these invariants exceeded
1). The results are presented in Table 1. Note that there are
no domain invariants that have not been grounded to a mu-
tex group due to the absence of the appropriate initial states
facts.

Most of the invariants in these benchmarks are either al-
ways mutex groups, or always overcrowded – there are at
least 2 propositions in the initial state that participate in that
invariant. However, there are some invariants that are mixed,
that is, lead to mutex groups in some cases, and are over-
crowded in others. Detailed analysis shows that this hap-
pens mostly due to the fact that there is a smaller invariant
that is contained in a larger one. For example, in the LOGIS-
TICS domain all the locations of a given truck T constitute
an invariant, but all the locations of all the trucks are also an
invariant of the domain. The latter invariant leads to a mutex
group only in the case where there is exactly one truck in the
problem. Thus, mixed invariants can be seen grounded in the
small problems of the domains, but getting overcrowded in
the large ones.

Conclusion
In this paper, we have proposed an extension to PDDL which
will allow for automated formal reasoning about domains.
This extension will make no difference to the task of solving
a single planning problem, with the possible exception of
first validating the given problem instance. However, as we
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Domain Inv Pure Over Mixed
AIRPORT-ADL 8 6 0 2
ASSEMBLY 0 0 0 0
BARMAN-OPT11-STRIPS 3 3 0 0
BARMAN-SAT11-STRIPS 3 3 0 0
BLOCKS 3 3 0 0
DEPOT 5 4 1 0
DRIVERLOG 2 2 0 0
ELEVATORS-OPT11-STRIPS 3 3 0 0
ELEVATORS-SAT11-STRIPS 3 3 0 0
FLOORTILE-OPT11-STRIPS 5 4 1 0
FLOORTILE-SAT11-STRIPS 5 4 1 0
FREECELL 7 6 1 0
GRID 7 5 2 0
GRIPPER 3 3 0 0
LOGISTICS00 1 1 0 0
LOGISTICS98 1 1 0 0
MICONIC-SIMPLEADL 1 1 0 0
MICONIC 1 1 0 0
MOVIE 0 0 0 0
MPRIME 3 3 0 0
MYSTERY 3 3 0 0
NO-MPRIME 2 2 0 0
NO-MYSTERY 3 3 0 0
NOMYSTERY-OPT11-STRIPS 2 2 0 0
NOMYSTERY-SAT11-STRIPS 2 2 0 0
OPENSTACKS 8 5 3 0
OPTICAL-TELEGRAPHS 7 6 1 0
PARKING-OPT11-STRIPS 4 3 1 0
PARKING-SAT11-STRIPS 4 3 1 0
PEGSOL-OPT11-STRIPS 2 1 1 0
PEGSOL-SAT11-STRIPS 2 1 1 0
PHILOSOPHERS 7 6 1 0
PIPESWORLD-NOTANKAGE 2 1 1 0
PSR-LARGE 0 0 0 0
PSR-MIDDLE 0 0 0 0
ROVERS 12 6 3 3
SATELLITE 2 1 0 1
SCANALYZER-OPT11-STRIPS 0 0 0 0
SCANALYZER-SAT11-STRIPS 0 0 0 0
SOKOBAN-OPT11-STRIPS 3 2 1 0
SOKOBAN-SAT11-STRIPS 3 2 1 0
STORAGE 3 3 0 0
TIDYBOT-OPT11-STRIPS 3 3 0 0
TIDYBOT-SAT11-STRIPS 3 3 0 0
TPP 5 5 0 0
TRANSPORT-OPT11-STRIPS 2 2 0 0
TRANSPORT-SAT11-STRIPS 2 2 0 0
TRUCKS 3 3 0 0
VISITALL-OPT11-STRIPS 1 1 0 0
VISITALL-SAT11-STRIPS 1 1 0 0
WOODWORKING-OPT11-STRIPS 7 6 1 0
WOODWORKING-SAT11-STRIPS 7 6 1 0
ZENOTRAVEL 2 2 0 0

Table 1: Inv – number of invariants in the domain; Pure –
number of invariants that are always grounded; Over – num-
ber of invariants that always have at least two predicates in
the initial state; Mixed – number of invariants that some-
times are grounded, and sometimes have to many predicted
in the initial state.

have illustrated in the previous section, such an extension
will allow us to perform formal reasoning over a domain
description, as well as provide a cleaner definition of what
constitutes a planning domain.

While the focus of this paper has been on classical plan-
ning, our proposal becomes perhaps even more relevant in
the context of non-deterministic planning. Specifically, fi-
nite state controllers are very useful with non-deterministic
and partially observable planning problems, and state esti-
mation is a must for realistic applications that involve sens-
ing in a partially observable world.

The paper does not presume to provide the definitive, best
possible, extension to PDDL. Two issue that were already
mentioned are that some domains have a separate domain
description for each problem instance, and that the goal can
be a logical formula, not just a single conjunction. With re-
gards to the first issue, this is usually the result of simplify-
ing ADL (Pednault 1989) to STRIPS for the sake of planners
that can not handle ADL. We argue this is not a real issue
here, as reasoning over our proposed extension will require
ADL-like reasoning (specifically, quantifiers). Furthermore,
it is possible to perform reasoning over a domain using the
complex ADL domain specification, and then planning us-
ing the simplified STRIPS version of the given problem.

The second issue, of complex goals, deserves further dis-
cussion. It could be possible to modify our proposed ex-
tension to PDDL to contain more general statements about
the goal, such as “the goal entails X” or “the goal contains
X as a subexpression in a location specified by y”. We are
skeptical that such statements would be of use in modeling
domains of interest to the planning community, and so we
do not propose them here.

Finally, despite the issues mentioned above, we believe
this paper serves as a starting point for a discussion about
what exactly constitutes a domain, and on what the auto-
mated planning community can contribute on top of state-
of-the-art automated planners.
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Abstract

One of the original motivations for domain-independent plan-
ning was to generate plans that would then be executed in the
environment. However, most existing planners ignore the pas-
sage of time during planning. While this can work well when
absolute time does not play a role, this approach can lead to
plans failing when there are external timing constraints, such
as deadlines. In this paper, we describe a new approach for
time-sensitive temporal planning. Our planner is aware of the
fact that plan execution will start only once planning finishes,
and incorporates this information into its decision making, in
order to focus the search on branches that are more likely to
lead to plans that will be feasible when the planner finishes.

Introduction
One of the original motivations for domain-independent
planning was for controlling robots performing complex
tasks (Fikes and Nilsson 1971). The typical approach to con-
trolling robots using a planner is to call the planner to gen-
erate a plan which solves the problem, and then execute that
plan in the environment. This approach works well if the
plan remains applicable regardless of when it is executed.
However, if there are external timing constraints, such as
deadlines which must be met, things become more complex.
This is because we must take into account the planning time.

For example, in the Robocup Logistics League (RCLL)
challenge (Niemueller, Lakemeyer, and Ferrein 2015), a
team of robots must move workpieces between different ma-
chines that perform some operations on them, and fulfill
some order with a deadline. This calls for using temporal
planning, because we would like all robots to work in par-
allel, and actions have different durations. The typical ap-
proach would have the planner come up with a plan which
would work had it been executed at time 0, and then execute
this plan when the planner completes. Obviously, this might
lead to missing the deadline, and thus, plan failure.

One simple approach to handling this problem is to use
some estimate on how long planning will take, and adapt all
the deadlines assuming plan execution would start when the
planner finishes. While using an upper bound on planning
time will eliminate the problem of plans failing, it might lead
to the planner not finding a feasible plan to begin with. On
the other hand, using too low an estimate could still lead to
plans failing, as discussed above.

In this paper, we describe a new approach for situated
temporal planning. Our planner is aware of the fact that plan
execution will start once planning finishes, and incorporates
this information into the internal data structure for temporal
reasoning used by the planner, together with estimates of re-
maining planning time. This helps our planner prune partial
plans which are likely to lead to the planner finishing plan-
ning too late for the plans to be of use, and focus on more
promising branches of the search.

Our empirical evaluation demonstrates that this planner
can handle temporal planning problems with absolute dead-
lines much better than a naive baseline approach, in realis-
tic settings where planning time counts, and the plan can
only start executing once it is completed. To the best of
our knowledge, this is the first temporal planner to explic-
itly consider planning time, within the context of planning
and execution. Thus, our planner is especially applicable to
online planning for robotics, where a robot must find a plan
to execute, but the world does not stop while the robot is
planning.

Preliminaries
We consider propositional temporal planning problems with
Timed Initial Literals (TIL) (Cresswell and Coddington
2003; Edelkamp and Hoffmann 2004). Such a planning
problem Π is specified by a tuple Π = ⟨F,A, I, T,G⟩,
where:
• F is a set of Boolean propositions, which describe the

state of the world.
• A is a set of durative actions. Each action a ∈ A is de-

scribed by:
– Minimum duration durmin(a) and maximum dura-

tion durmax(a), both in R0+ with durmin(a) ≤
durmax(a),

– Start condition cond⊢(a), invariant condition
cond↔(a), and end condition cond⊣(a), all of
which are subsets of F , and

– Start effect eff ⊢(a) and end effect eff⊣(a), both of
which specify which propositions in F become true
(add effects), and which become false (delete effects).

• I ⊆ F is the initial state, specifying exactly which propo-
sitions are true at time 0.
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• T is a set of timed initial literals (TIL). Each TIL l ∈
T consists of a time time(l) and a literal lit(l), which
specifies which proposition in F becomes true (or false)
at time time(l).

• G ⊆ F specifies the goal, that is, which propositions we
want to be true at the end of plan execution.
A solution to a temporal planning problem is a schedule

σ, which is a sequence of triples ⟨a, t, d⟩, where a ∈ A is
an action, t ∈ R0+ is the time when action a is started, and
d ∈ [durmin(a), durmax(a)] is the duration chosen for a. A
schedule can be seen as a set of instantaneous happenings
(Fox and Long 2003), which occur when an action starts,
when an action ends, and when a timed initial literal is trig-
gered. Specifically, for each triple ⟨a, t, d⟩ in the schedule,
we have action a starting at time t (requiring cond⊢(a) to
hold a small amount of time ϵ before time t, and applying
the effects eff ⊢(a) right at t), and ending at time t + d (re-
quiring cond⊣(a) to hold ϵ before t + d, and applying the
effects eff⊣(a) at time t+ d). For a TIL l we have the effect
specified by lit(l) triggered at time time(l). Finally, in or-
der for a schedule to be valid, we also require the invariant
condition cond↔(a) to hold over the open interval between
t and t+d, and that the goal G holds at the state which holds
after all happenings have occurred.

Related Work
Temporal planners have of course been used in on-line ap-
plications before. For example, researchers at PARC built
a special-purpose temporal planner for on-line manufactur-
ing (Ruml et al. 2011). As in many temporal planners, each
search node contains a Simple Temporal Network (STN)
(Dechter, Meiri, and Pearl 1991) to represent the time points
of events in the plan and constraints on when they can occur.
To reflect the fact that actions cannot occur until planning
has completed, the PARC planner includes a hard-coded es-
timate of the required planning time, and every time point in
the STN is constrained to occur at least that far after the time
that planning started (Ruml et al. 2011, Figure 11). While
this is a reasonable solution in a domain where the expected
planning problems are all of similar difficulty, this approach
can perform poorly in domains that include a wide variety
of problems, as we will see below.

There has also been work on time-aware planning in
the search community. Dionne, Thayer and Ruml (2011)
present a so-called ‘contract algorithm’ called Deadline-
Aware Search (DAS) that, given a deadline, attempts to re-
turn the cheapest complete plan that it can find within that
deadline. The main part of the algorithm works by estimat-
ing the time that will be required to find a solution beneath
each node in the open list, and pruning those for which this
estimate exceeds the remaining search time. The estimate is
the product of three quantities that are determined on-line:
the time required to expand a node, expressed in seconds,
an estimate on the number of search nodes remaining on the
path to a goal beneath the given node, notated d(n), and the
average number of expansions required before a generated
node is selected for expansion, called the expansion delay.
Although DAS was shown to surpass anytime algorithms on

combinatorial benchmarks, its ideas have never been imple-
mented in a domain-independent planner.

Bugsy (Burns, Ruml, and Do 2013) is a search algorithm
that attempts to minimize the user’s utility, which is repre-
sented as a linear combination of planning time and plan
cost. If plan cost is makespan, then the utility measures the
‘goal achievement time’, or the time from when the goal
is presented to the planner, and planning starts, to when
the plan finishes executing, and the goal is achieved by the
agent. Bugsy is a best-first search algorithm, and relies on an
estimate of remaining planning time similar to that of DAS
in order to estimate the utility of each node it expands. While
Bugsy is sensitive to its own planning time, it is not cog-
nizant of external timed events such as deadlines, and does
not prune nodes based on temporal information.

Related concepts in the search community include real-
time search and anytime search. In the real-time search
setting, the planner must return within a prespecified time
bound the next action for the agent to take. This differs from
our setting, in which the planner must return a complete plan
and the temporal constraints are fine-grained and can relate
individual domain propositions to absolute times. In anytime
search, a planner quickly finds a complete plan, and then
uses additional computation time to improve it until either it
is terminated by an external signal or an optimal solution is
found. In our setting, the planner may not run indefinitely,
but rather is expected to minimize the agent’s goal achieve-
ment time. And while doing so, we demand that the planner
recognize that time is passing and that it be responsive to
timed events in the external world.

Encoding Planning and Execution Time
Many temporal planners (e.g., (Coles et al. 2009; 2012;
2010; Benton, Coles, and Coles 2012; Fernández-González,
Karpas, and Williams 2015; 2017)) rely on an internal Sim-
ple Temporal Network (STN) (Dechter, Meiri, and Pearl
1991) (or possibly a linear program or a convex optimiza-
tion problem — but we will abuse terminology and call all of
these the STN) to represent the temporal constraints between
the set of the time points where actions start or end. Specif-
ically, planners that support required concurrency (Cushing
et al. 2007) tend to use this representation to support concur-
rent execution of actions.

When planning is done offline, the STN contains some
time point tES , which is the start of plan execution, and is
assigned the value of 0. For convenience, we split each oc-
currence of action a in the plan into two snap-actions: a⊢ and
a⊣, corresponding to the start and end of the action, respec-
tively. For each of these we have a corresponding time point
in the STN: t(a⊢) when a starts, and t(a⊣) when a ends. Ac-
tions which have started but not yet finished will only have
the start time point, since this is a partial plan (as noted ear-
lier, all starts eventually need to be paired with an end, but
this is not a requirement of plans that are still under con-
struction). Temporal constraints between the time points are
either action duration constraints (between the time points
of the same action occurrence), or sequencing constraints
due to causal relations between actions. For example, if the
end of action a achieves the start conditions of action b, then
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we would have t(a⊣) − t(b⊢) ≥ ϵ, where ϵ is the mini-
mum separation between two events that depend on each
other (Fox and Long 2003). Or, if the start of c threatens
the preconditions of d, then t(c⊢) − t(d⊣) ≥ ϵ. Addition-
ally, timed initial literals (TIL) (Edelkamp and Hoffmann
2004) are encoded into the STN by adding a time point t(f)
for the occurrence of TIL f , with the temporal constraint
t(f) − tES = time(f), where time(f) is the time at which
f occurs, as specified in the problem definition. These are
then ordered with respect to the other steps in the plan by,
again, adding sequencing constraints due to the causal rela-
tions between lit(f) and the other steps in the plan.

In this paper, we focus on online planning. We want to
account for the fact that time passes during the planning
process, and that, in fact, planning time and execution time
are both the same. In order to do so, we modify the STN
described above by adding two additional time points: tPS

which is the time when planning started, and tnow which
is the current time. We add the temporal constraint that
tnow − tPS equals the currently elapsed time in planning.
The expression tES − tnow corresponds to the remaining
planning time, which is, of course, unknown. We will dis-
cuss this expression, and how to treat it, in the next sec-
tion. Now, tPS = 0, while tES is unknown. Finally, be-
cause TILs describe absolute time, we must modify the tem-
poral constraints corresponding to TILs to use tPS instead
of tES , i.e., the temporal constraint for TIL l would be
t(l) − tPS = time(l), where time(l) is the time at which
l must occur.

Time-Aware Planning
We have described a technique for encoding an STN which
captures the fact that execution only starts after planning
ends, and planning takes time. We now describe the impact
this has on search within a temporal planner.

Forward Planning Search Space
We take as our basis the forward-search approach of the
planner OPTIC (Benton, Coles, and Coles 2012). Here, each
search state comprises the plan π (of snap actions) that
reaches that state; the propositions p ⊆ F that hold after
π was executed from the initial state; and the Simple Tem-
poral Network STN (π) encoding the temporal constraints
over π.

When expanding a state in OPTIC, successors were gener-
ated in one of three ways:

• By applying a start snap-action that is logically appli-
cable: any a⊢ where p ! cond⊢(a); eff ⊢(a) would not
break the invariant condition of an action that has started
in π but not yet ended; and cond↔ would be satisfied once
a⊢ has been applied. In this case, in the successor state,
π′ = π + [a⊢], p is updated according to eff ⊢(a) to yield
p′, and a variable t(a⊢) added to STN (π′). Sequence con-
straints are imposed on this such that it follows any step
in π that met one of cond⊢(a); or whose effects refer to
the same propositions as eff ⊢(a); or whose preconditions
(including invariant conditions) would be threatened by

eff ⊢(a)
1.

• By applying an end snap-action that is logically applica-
ble – any a⊣where a has started in π but not yet ended;
p ! cond⊣(a); and whose effects eff ⊢(a) would not
break the invariant of any other action that has started in
π but not yet ended. In this case, the successor state is up-
dated in a way analogous to starting an action, with the
additional STN constraint durmin(a) ≤ t(a⊣) − ta⊢ ≤
durmax(a).

• By applying a Timed Initial Literal l that has not already
occurred in π. In this case, π′ = π + [l], p is updated ac-
cording to lit(l) to yield p′, and a variable t(l) is added
to STN (π′). For the purposes of sequence constraints,
this can be thought of as being a snap-action with no pre-
conditions – it suffices to order it after steps in π whose
preconditions or effects refer to lit(l). To fix the time at
which l occurs, an additional STN constraint is added:
t(l) − tPS = time(l) – while snap-actions are ordered
only relative to other points in the plan, TILs must also
occur a specific amount of time after time zero.
State expansion in this way generates candidate succes-

sors that are logically feasible; to ensure they are also tem-
porally feasible, only those whose STNs are consistent are
kept. Using an all-pairs shortest path algorithm in the STN
will both check consistency (with negative cycles corre-
sponding to an inconsistent STN), and give us the earliest
and latest possible time at which each snap-action could be
applied. We denote these tmin(x) and tmax(x) for each STN
variable t(x). Typically, only the former of these is used –
to map π to a schedule σ, each start–end snap-action pair
a⊢, a⊣gives a triple ⟨a, tmin(a⊢), (tmin(a⊣) − tmin(a⊢))⟩.
In other words, apply each action as soon as possible, with
the shortest possible duration, thereby minimizing execution
time.

Extending this approach to planning while aware of plan-
ning and execution time requires a number of modifications,
which we now step through.

No action can start before plan execution starts – be-
cause execution cannot start until a plan has been produced.
That is, for each a⊢ in the plan π, we add a constraint
tES ≤ t(a⊢) to the STN, where tES is the time at which
execution will start. We do not know this a priori, but can at
least say tnow ≤ tES is the time since the planner started ex-
ecuting. An STN for a plan produced during successor gen-
eration will then be consistent iff it is not already too late to
start executing the plan.

These additional constraints can be thought of as pushing
the earliest actions in the plan to start after now; the effects
of which are then propagated through the STN to appropri-
ately delay the later actions, according to the sequence and
duration constraints. If an otherwise-consistent STN is made
inconsistent by these, then necessarily there must be a snap-
action x where tmax(x) < tnow – i.e. we are past the latest
point at which x could have been applied.

1As search progresses in a strictly forward direction, all threats
are dealt with by demotion – ordering the new step after existing
steps.
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Planning time particularly matters in the presence of TILs
– in the absence of these, we can start executing a plan when-
ever we like by simply delaying the start of the first action.
If TILs are present, though, these anchor the plan to having
to fit around absolute time: with reference to state expan-
sion, when a TIL is added to the plan, this fixes it to come
after any earlier steps with which it would interfere, thereby
constraining their maximum time.

Automatically applying past TILs – if we are now past
the time at which a TIL has occurred, it is added to π before
expanding the state.

More formally, immediately before expanding a state S =
⟨π, p,STN (π)⟩, the following TILs are applied:

{l ∈ T | t(now) ≥ time(l) ∧ l ̸∈ π}

If there are several such TILs, they are applied in as-
cending order of time(l). The mechanism for applying these
TILs is identical to that in OPTIC: each is applied, to yield a
successor state S′; and then S′ replaces S. By doing this be-
fore expanding the state, we account for time having passed
since S having been placed on the open list, and it being
expanded – if in this time a TIL will have happened, S is
updated accordingly, before expansion.

If this modification was not made, search would be free to
branch over what step should next be added to π. In the case
where a TIL l represents a deadline – by deleting a precon-
dition on actions that must occur by a given time – search
would be free to apply these actions, even though in real-
ity it is too late. By forcing the application of past TILs, we
avoid this behavior: all such actions would then become in-
applicable.

Pruning states where it is too late to start their plan
From the STN for a plan π, we can note the latest point at
which that plan can start executing; and prune any states for
which this time has already passed.

As noted earlier, to check if the STN for a state is con-
sistent, we use an all-pairs shortest path algorithm. This in-
cidentally yields the minimum and maximum time-stamps
for each snap-action. For snap-actions that are ordered be-
fore a TIL – which are fixed in time – these maximum
time-stamps are finite. Moreover, because the plan is ex-
panded in a strictly forward direction, the maximum times-
tamps are monotonically decreasing: it is not possible to
somehow order a new action before a plan step, in a way
that reduces its maximum time-stamp. Thus, for each state
S = ⟨π, p,STN (π)⟩ we identify the start snap-action in π
that has the earliest possible maximum time-stamp – this is
the latest time at which π could feasibly be executed:

latest start(π) = min{tmax(a⊢) | a⊢ ∈ π}

Then, when S is about to be expanded – after it was gener-
ated, placed on the open list, and then removed – it is pruned
if tnow > latest start(π).

Experiments
To gain a concrete sense of the practical import of our tech-
nique, we experimentally compared it to the baseline method

Figure 1: Screenshot of the underwater simulator, in which
the AUV is inspecting the structure.

of prespecified planning times. We performed experiments
in two types of domains: a realistic AUV simulation, and a
set of IPC domains.

As a baseline against which to compare our time-aware
planner, we used OPTIC in optimization mode, searching for
the best plan within a varying fixed planning time of T sec-
onds. Time windows were considered to be T seconds ear-
lier, to adjust the initial state to the start of execution time.
Therefore, a TIL l occurring at time time(l) seconds, using a
planning time of T seconds, will occur at time (time(l)− T )
(at least 0) in the plan.

AUVs
We demonstrate the approach in simulation with au-
tonomous underwater vehicles (AUVs). We embed OPTIC
and our planner into ROS, using ROSPlan (Cashmore et
al. 2015), to control the AUV. The AUV is equipped with
a manipulator and placed in an underwater structure, with
the task to inspect certain areas and to ensure that valves
are turned to correct angles. The valves can only be turned
within certain time windows, outside of which the valve is
blocked. If the valve cannot be turned to the correct angle
within an early time window, then a later window can be
used. We generated 41 missions with varying time windows.
A screenshot of the simulation is shown in Figure 1

These missions normally form part of a larger, strategic
mission, spread out over a number of seabed manifolds. The
AUV moves between these manifolds in order to complete
the missions. Due to the uncertainty in the environment, it
is not known beforehand precisely what time the AUV will
arrive at the manifold. Before beginning the task, the AUV
must construct a new plan. Plans with shorter durations are
considered to be of higher quality, as this eases the time con-
straints on the remainder of the missions. We use this sce-
nario to show that our approach allows the AUV to make use
of earlier time windows, generating plans of higher quality.

The results are summarized in Table 1. The table shows
the number of problems solved for each planner, out of a
possible 41. Using our approach every problem was solved.
Using a fixed planning time, some problems were unsolv-
able due to a planning time that was too short. The table
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Time
Aware

OPTIC50 OPTIC100 OPTIC200

best quality 34 13 20 19
IPC quality 40.19 25.55 26.19 26.47
problems
solved

41 26 34 40

Table 1: Table comparing the number of problems solved,
the number of plans of highest quality, and the IPC quality
for each approach.

Figure 2: Plan durations per problem for each approach. The
time-aware approach solves many problems using an earlier
time window. OPTIC using a long planning time solves al-
most every problem, but only using the later time windows.
Other planning time bounds are less reliable.

also shows the number of best plans for each approach. This
is the number of problems for which that approach produced
the plan of highest quality between the four approaches (pos-
sibly jointly). There it can be seen that although increasing
the planning time allows for all problems to be solved, the
quality is much poorer. The higher absolute number of best
plans for the 200 second planning time is due to the greater
number of problems solved. Finally, the table shows the IPC
quality, calculated for all problems. These results demon-
strate the choice between acting quickly, utilizing early time-
windows, or producing plans reliably. Using the time-aware
approach does both.

This can be seen more clearly in Figure 2. This figure
compares the plan duration from each approach per prob-
lem. Using OPTIC200 almost every problem is solved, at the
longest possible plan duration – assuming planning takes
200 seconds forces the planner to have to use the later time
windows. Other approaches may generate shorter plan dura-
tions, but fail to solve many of the problems.

IPC Domains
In our IPC experiments, we tested all IPC-4 and IPC-5 do-
mains that contain TILs: airport, pipesworld, satellite, truck,
and UMTS. The UMTS domains and half of the airport
instances were omitted as none of the planners completed

Time Aware OPTIC0.1 OPTIC1 OPTIC10

best quality 38 1 0 1
IPC quality 38 9.99 29.74 19.89
problems solved 38 10 30 21

Table 2: Table comparing the number of problems solved,
the number of plans of highest quality, and the IPC quality
for each approach

these. The planners were given a maximum of 200s of CPU
time and 4GB of memory.

Table 2 presents results on the modified IPC domains. The
fixed planning time planners were outperformed by the time-
aware methods in every domain. Several instances were un-
solvable by the former due to the fixed planning time con-
straints. Table 3 shows the planners detailed performance in
each relevant domain tested.

In addition to the fixed planning times that are showed in
Table 2 and Table 3 we have tested 50s, 100s, and 200s. The
performance of the baseline approach with these planning
times were lower than the time-aware method and the best
presented baseline, thus these results were omitted.

Conclusions and Future Work
We have presented a domain-independent temporal planner
that takes the interaction between the time spent on plan-
ning and execution time into consideration. We have demon-
strated empirically that this planner achieves much better re-
sults in domains with absolute deadlines than our baseline
approach. However, our work is merely the first step in ad-
dressing this important topic. There remain many exciting
avenues for future work.

For example, our planner only looks at the current par-
tial plan, and uses a heuristic to “look” into the future. This
heuristic is used to estimate the remaining search depth, but
not to obtain more information about future actions and their
effects on deadlines. In order to get a more informed view
of future actions, and their effect on deadlines, we will ex-
plore using temporal landmarks (Karpas et al. 2015). These
landmarks could be encoded into the same STN of the par-
tial plan, and thus we believe we will be able to achieve even
better pruning of branches of the search tree which will not
lead to a solution in time.

More broadly, the problem we are addressing here could
benefit from more explicit metareasoning (Russell and We-
fald 1991). For example, suppose we had a planning prob-
lem with two possible solutions, each of which must be
explored on a separate branch of the search tree. Further
suppose that each of these solutions has a deadline which
leaves just enough time to explore one of the branches, but
not both of them. Clearly, a planner with perfect knowledge
would choose one of these branches and explore it. On the
other hand, the approach we present here will explore both
branches until it realizes there is not enough time left, and
will then prune both branches — without solving the prob-
lem. In future work, we will explore ways of addressing this
type of problem by incorporating explicit metareasoning on
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group planner solved time GAT

airport-1 Time Aware 14 6.62 193.54
OPTIC0.1 2 0.06 89.61
OPTIC1 10 0.24 167.72
OPTIC10 10 0.20 176.72

pipesworld Time Aware 3 0.72 16.06
OPTIC0.1 1 0.05 12.11
OPTIC1 4 0.51 15.51
OPTIC10 0

satellite-1 Time Aware 1 0.03 190.23
OPTIC0.1 1 0.04 190.31
OPTIC10 1 0.02 200.21
OPTIC1 1 0.02 191.21

satellite-2 Time Aware 5 0.71 181.89
OPTIC0.1 1 0.03 190.31
OPTIC1 4 0.39 182.87
OPTIC10 1 0.56 129.16

satellite-3 Time Aware 5 0.80 181.88
OPTIC0.1 1 0.03 190.31
OPTIC1 4 0.36 182.87
OPTIC10 1 0.56 129.16

satellite-4 Time Aware 4 2.20 165.20
OPTIC0.1 0
OPTIC1 2 0.15 155.00
OPTIC10 2 1.38 147.38

truck Time Aware 6 0.21 1840.98
OPTIC0.1 4 0.05 1673.95
OPTIC1 5 0.06 1674.20
OPTIC10 6 0.20 1855.97

Table 3: Table comparing the number of problems solved,
the planning time, and the goal achievement time (GAT)
grouped by IPC instance type. The planning time, and the
GAT is the mean of all instances in the group solved by the
planner.

planning time allocation into the search strategy.
One possible approach for this would be to treat the ex-

pression tES − tnow as a variable, which we will denote
by slack. We can then treat the STN as a mathematical op-
timization problem, and maximize the slack. The slack for
node n can serve as a proxy for the probability of finding
a solution in time in the subtree rooted at n. Our metarea-
soning algorithm could then choose the next node to expand
based on both heuristic estimates and the slack.
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Abstract
This paper aims to identify in a practical manner unknown
physical parameters, such as mechanical models of actuated
robot links, which are critical in dynamical robotic tasks. Key
features include the use of an off-the-shelf physics engine and
the data-efficient adaptation of a black-box Bayesian optimiza-
tion framework. The task being considered is locomotion with
a high-dimensional, compliant Tensegrity robot. A key insight
in this case is the need to project the system identification
challenge into an appropriate lower dimensional space. Com-
parisons with alternatives indicate that the proposed method
can identify the parameters more accurately within the given
time budget, which also results in more precise locomotion
control.

Introduction
This paper presents an approach for model identification by
exploiting the availability of off-the-shelf physics engines
used for simulating dynamics of robots and objects they inter-
act with. There are many examples of popular physics engines
that are becoming increasingly efficient (Erez, Tassa, and
Todorov, 2015; Bul; MuJ; DAR; Phy; Hav). These physics
engines receive as input mechanical and mesh models of the
robots in a particular scene, in addition to controls (force,
torque, velocity, etc.) applied to them, and return a prediction
of the robot’s dynamical response.

The accuracy of the prediction depends on several factors.
The first one is the limitation of the mathematical model
used by the engine (e.g., the Coulomb approximation). The
second factor is the accuracy of the numerical algorithm used
for solving the equations of motion. Finally, the prediction
depends heavily on the accuracy of the physical parameters
of the robots, such as mass, friction and elasticity. In this
work, we focus on the last factor and propose a method to
improve the accuracy of the physical parameters used in the
physics engine.

In the context of compliant locomotion systems, the
Tensegrity robot of Figure 1 is a structurally compliant plat-
form that can distribute forces into linear elements as pure
compression or tension (Caluwaerts et al., 2014). This robot’s
tensile elements can be actuated, enabling it to effectively
adapt to complex contact dynamics in unstructured terrains.

Copyright c⃝ 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The Tensegrity robot (Caluwaerts et al., 2014).

A policy for a rolling locomotive gait of the platform has
been learned from simulated data (Geng et al., 2016). Tenseg-
rity robots are inherently high-dimensional, highly-dynamic
systems, and providing a predictive model requires a physics-
based simulator (NTRT). The accuracy of such a solution
critically depends upon physical parameters of the robot, such
as the density of its rigid elements and the elasticity of the
tensile elements. While a manual process can be followed to
tune a simulation to match the behavior of a real prototype
(Mirletz et al., 2015), it is highly desirable to conduct this
calibration using as few observed trajectories as possible. In
this work, trajectories generated by a simulation manually
tuned to a prototypical robotic platform are used to identify
the parameters of a physics engine for tensegrity modeling.
Given the high-dimensionality of the parameter space, this
is a challenging problem. This work proposes the mapping
of the system identification process to a lower dimensional
space of parameters. Methods used for dimensionality reduc-
tion include Random Embedding (REMBO) (Wang et al.,
2016) as well as Variational Auto Encoder (VAE) (Kingma
and Welling, 2014). A data-efficient Bayesian optimization
technique is used for searching in the lower dimensional
space, instead of the original high dimensional parameter
space. The proposed method is able to efficiently identify
the parameters that produce a simulation that most closely
matches the observed ground-truth trajectories of this excit-
ing locomotive platform.
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Foundations and Contributions
Two high-level approaches exist for learning robotic tasks
with unknown dynamical models: model-free and model-
based ones. Model-free methods search for a policy that best
solves the task without explicitly learning the system dy-
namics (Sutton and Barto, 1998; Bertsekas and Tsitsiklis,
1996; Kober, Bagnell, and Peters, 2013; Levine and Abbeel,
2014). Model-free methods are accredited with the recent suc-
cess stories of reinforcement learning in video games (Mnih
et al., 2015). For robot learning, a relative entropy policy
search has been used (Peters, Mülling, and Altün, 2010) to
successfully train a robot to play table tennis. The PoWER
algorithm (Kober and Peters, 2009) is another model-free
policy search approach widely used in robotics.

Model-free methods, however, do not easily generalize to
unseen regions of the state-action space. To learn an effective
policy, features of state-actions in learning and testing should
be sampled from distributions that share the same support.
This is rather dangerous in robotics, as poor performance in
testing could lead to irreversible damage.

Model-based approaches explicitly learn the dynamics
of the system, and search for an optimal policy using stan-
dard simulation, planning, and actuation control loops for
the learned parameters. There are many examples of model-
based approaches for robotic manipulation (Dogar et al.,
2012; Lynch and Mason, 1996; Merili, Veloso, and Akin,
2014; Scholz et al., 2014; Zhou et al., 2016), some of which
have used physics-based simulation to predict the effects of
pushing flat objects on a smooth surface (Dogar et al., 2012).
A nonparametric approach was employed for learning the out-
come of pushing large objects (furniture) (Merili, Veloso, and
Akin, 2014). A Markov Decision Process (MDP) has been
applied to modeling interactions between objects; however,
only simulation results on pushing were reported (Scholz et
al., 2014). For general-purpose model-based reinforcement
learning, the PILCO algorithm has been proven efficient in
utilizing a small amount of data to learn dynamical mod-
els and optimal policies (Deisenroth, Rasmussen, and Fox,
2011).

Bayesian Optimization is a popular framework for data-
efficient black-box optimization (Shahriari et al., 2016). In
robotics, some recent applications include learning con-
trollers for bipedal locomotion (Antonova, Rai, and Atkeson,
2016), gait optimization (Calandra et al., 2016) and transfer
policies from simulation to real world (Marco et al., 2017).

This work is based on a model-based approach, which
instead of learning a dynamics model, it utilizes a physics
engine, and concentrates on identifying only the mechanical
properties of the objects instead of recreating the dynamics
from scratch. Furthermore, it utilizes Bayesian optimization
and identifies a process for dealing with high-dimensional
system identification challenges efficiently.

Proposed Approach
This work proposes an online approach for robots to learn
the physical parameters of their dynamics through minimal
physical interaction. Because of the high dimensionality of
the parameter space of the tensegrity robot, even with efficient

optimization method like Bayesian optimization (BO), it
is still challenging to identify all the parameters efficiently.
The overall framework of the model identification process
is first introduced, then the approaches of dimensionality
reduction to decrease the search space of BO in order to
achieve efficient optimization are covered in detail.

Model Identification
For the tensegrity robot, the physical properties of interest
correspond to the density, length, radius, stiffness, damping
factor, pre-tension, motor radius, motor friction, and motor
inertia of the various rigid and tensile elements and actuators.

These physical properties are represented as a D-
dimensional vector θ ∈ Θ, where Θ is the space of all pos-
sible values of the physical properties. Θ is discretized with
a regular grid resolution. The proposed approach returns a
distribution P on discretized Θ instead of a single point θ ∈Θ
since model identification is generally an ill-posed problem.
In other terms, there are multiple models that can explain an
observed trajectory with equal accuracy. The objective is to
preserve all possible explanations for the purposes of robust
planning.

The online model identification algorithm (given in Algo-
rithm 1) takes as input a prior distribution Pt , for time-step
t ≥ 0, on the discretized space of physical properties Θ. Pt
is calculated based on the initial distribution P0 and a se-
quence of observations (x0,µ0,x1,µ1, . . . ,xt−1,µt−1,xt). For
the Tensegrity robot, xt is a state vector concatenating the 3D
centers of all rigid elements, i.e., the rods in the correspond-
ing Figure 1, and µt is a vector of motor torques.

The process consists of simulating the effects of the con-
trols µi on the robot in states xi under various values of param-
eters θ and observing the resulting states x̂i+ 1, for i = 0, . . . , t.
The goal is to identify the model parameters that make the
outcomes x̂i+ 1 of the simulation as close as possible to the
real observed outcome xi+ 1. In other terms, the following
black-box optimization problem is solved:

θ ∗ = argmin
θ∈Θ

E(θ) de f
=

t

∑
i= 0

∥xi+ 1 − f (xi,µi,θ)∥2, (1)

wherein xi and xi+ 1 are the observed states of the robot at
times i and i + 1, µi is the control that applied at time t,
and f (xi,µi,θ) = x̂i+ 1, the predicted state at time t + 1 after
simulating control µi at state xi using physical parameters θ .

The proposed approach consists of learning the error func-
tion E from a sequence of simulations with different parame-
ters θk ∈ Θ. To choose these parameters efficiently in a way
that quickly leads to accurate parameter estimation, a belief
about the actual error function is maintained. This belief is a
probability measure over the space of all functions E : RD →
R, and is represented by a Gaussian Process (GP) (Rasmussen
and Williams, 2005) with mean vector m and covariance ma-
trix K. The mean m and covariance K of the GP are learned
from data points {

(
θ0,E(θ0)

)
, . . . ,

(
θk,E(θk)

)
}, where θk is

a vector of physical properties of the object, and E(θk) is
the accumulated distance between actual observed states and
states that are obtained from simulation using θk.

The probability distribution P on the identity of the best
physical model θ ∗, returned by the algorithm, is computed
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Input: State-action-state data {(xi,µi,xi+ 1)} for
i = 0, . . . , t
Θ, a discretized space of possible values of
physical properties;

Output: Probability distribution P over Θ according to
the provided data;

Sample θ0 ∼Uniform(Θ); L ← /0; k ← 0;
repeat

lk ← 0;
for i = 0 to t do

Simulate {(xi,µi)} using a physics engine with
physical parameters θk and get the predicted
next state x̂i+ 1 = f (xi,µi,θk) ;

lk ← lk + ∥x̂i+ 1 − xi+ 1∥2;
end
L ← L∪{(θk, lk)};
Calculate GP(m,K) on error function E, where

E(θ) = l, using data (θ , l) ∈ L;
Sample E1,E2, . . . ,En ∼GP(m,K) in Θ;
foreach θ ∈ Θ do

P(θ)≈ 1
n ∑n

j= 0 1θ= argminθ ′∈Θ E j(θ ′)

end
θk+ 1 = argminθ∈Θ P(θ) log

(
P(θ)

)
;

k ← k + 1;
until Timeout;

Algorithm 1: Model Identification with Greedy Entropy
Search

from the learned GP as

P(θ) de f
= P

(
θ = arg min

θ ′∈Θ
E(θ ′)

)

=
∫

E:RD→R
pm,K(E)Πθ ′∈Θ−{θ}H

(
E(θ ′)−E(θ)

)
dE

(2)

where H is the Heaviside step function, i.e., H
(
E(θ ′)−

E(θ)
)
= 1 if E(θ ′)≥ E(θ) and H

(
E(θ ′)−E(θ)

)
= 0 other-

wise, and pm,K(E) is the probability of a function E according
to the learned GP mean m and covariance K. Intuitively, P(θ)
is the expected number of times that θ happens to be the
minimizer of E when E is a function distributed according to
GP density pm,K .

Distribution P from Equation 2 does not have a closed-
form expression. Therefore, a Monte Carlo sampling is em-
ployed for estimating P. Specifically, the process samples
vectors containing values that E could take, according to the
learned Gaussian process, in the discretized space Θ. P(θ)
is estimated by counting the fraction of sampled vectors of
the values of E where θ happens to have the lowest value, as
indicated in Algorithm 1.

Finally, the computed distribution P is used to select the
next vector θk+ 1 to use as a physical model in the simula-
tor. This process is repeated until the entropy of P drops
below a certain threshold, or until the algorithm runs out
of the allocated time budget. The entropy of P is given as
∑θ∈Θ−Pmin(θ) log

(
Pmin(θ)

)
. When the entropy of P is close

to zero, the mass of distribution P is concentrated around a
single vector θ , corresponding to the physical model that

best explains the observations. Therefore, the next vector
θk+ 1 should be selected such that the entropy of P would de-
crease after adding the data point

(
θk+ 1,E(θk+ 1)

)
to train the

GP and re-estimate P using the new mean m and covariance
K in Equation 2.

The Entropy Search method (Hennig and Schuler, 2012)
follows this reasoning and use Monte Carlo again to sample,
for each potential choice of θk+ 1, a number of values that
E(θk+ 1) could take according to the GP in order to estimate
the expected change in the entropy of P and choose the pa-
rameter vector θk+ 1 that is expected to decrease the entropy
of P the most. The existence of a secondary nested process
of Monte Carlo sampling makes this method impractical for
online model identification. Instead, this work proposes a
simple heuristic for choosing the next θk+ 1. In this method,
called Greedy Entropy Search, the next θk+ 1 is chosen as the
point that contributes the most to the entropy of P, i.e.,

θk+ 1 = argmax
θ∈Θ

−P(θ) log
(
P(θ)

)
.

This selection criterion is greedy because it does not antici-
pate how the output of the simulation using θk+ 1 would affect
the entropy of P. Nevertheless, this criterion selects the point
that is causing the entropy of P to be high. That is, a point
θk+ 1 with a good chance P(θk+ 1) of being the real model,
but with a high uncertainty P(θk+ 1) log

( 1
P(θk+ 1)

)
.

Random Embedding for Model Identification in
the High Dimensional Space
For problems where the space Θ of physical properties has a
high dimension D, the method presented in Algorithm 1 is
not practical because the number of elements in discretized
Θ is exponential in dimension D. This is a common problem
in global search methods (Wang et al., 2016). In fact, it has
been shown that Bayesian optimization techniques do not
perform better than a random search when the dimension of
the search space is too large (10 dimension in the experiment
in (Ahmed, Shahriari, and Schmidt, 2016)). Therefore, Algo-
rithm 1 cannot be directly used for robotic platforms with a
large number of joints and parameters, such as the Tensegrity
robot or compliant dexterous hands.

Dimensionality reduction is a popular solution to the prob-
lem of searching in high-dimensional spaces. This solution is
particularly appealing in the context of this work because we
are more interested in the accuracy of the predicted trajectory
than in identifying the true underlying physical parameters.
Mechanical models of motion tie together several parameters
of an object. For example, in Coulomb’s model, the mass
and the friction of an object are used in a linear function to
predict the motion of a sliding planar object. Therefore, one
can map linearly these two parameters to a single parameter
and still make accurate predictions of the motion.

Random embedding is an efficient and effective dimen-
sionality reduction technique (Wang et al., 2016). Given a
space of parameters Θ with dimension D, we generate a ran-
dom matrix A ∈ RD× d that projects points from Θ ⊂ RD

to a lower-dimensional space of parameters Ω ⊂ Rd where
d < D. Instead of discretizing Θ, we discretize Ω into a
regular grid and map each point ω ∈ Ω to a point θ in the
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Figure 2: LEFT: A example of 1D-to-2D projection resulting
in points outside the original domain. RIGHT: REMBO ap-
proaches this issue by projecting the point outside Θ to the
nearest boundary point of Θ.

original high-dimensional space by using A, i.e. θ = Aω .
One can show (Wang et al., 2016) that with probability one,
minθ∈Θ E(θ) = minω∈Ω E(Aω) where E is the error func-
tion in Equation 1. Consequently, we run Algorithm 1 using
discretized Ω as input instead of Θ. We project back the low-
dimensional vectors ω ∈ Ω to original parameter space Θ
using θ = Aω when we need to run the physical simulation
to get the trajectory under a sampled value of ω .

However, For a randomly generated matrix A and point
ω ∈ Ω, the corresponding high-dimensional vector θ = Aω
is not guaranteed to belong to Θ, but could instead lie any-
where within RD. The simulator may consider θ as invalid if
it is outside of Θ as shown in Fig.2. Moreover, just doing a
rejection sampling does not always work because most of the
points could be rejected for being invalid in some cases. Ran-
dom EMbedding Bayesian Optimization (REMBO) (Wang et
al., 2016) addressed this issue simply by projecting the point
outside Θ to the nearest boundary point of Θ.

Variational Auto Encoder for Model Identification
in the High Dimensional Space
An auto encoder is a neural network that learns to reconstruct
the input by going through a latent space, which is in a lower
dimensional space than the original input space(Vincent et
al., 2010). It has shown to be very useful in unsupervised
learning of low dimensional representations. A variational
auto encoder (VAE) adds an additional constraint that the la-
tent space follows a prior distribution, usually assumed to be
Gaussian (Kingma and Welling, 2014). This additional con-
straint makes the model more useful as a generative model,
as it also learns to generate output from the prior distribution
in addition to reconstruction.

We adapt the VAE and combine it with the Bayesian op-
timization process, as shown in Fig. 3. Firstly, the VAE is
trained with randomly sampled physical parameter data θ to
learn a low dimension embedding α . Once the VAE is opti-
mized, the decoder part is used to project the low dimensional
α back to the original physical parameter space θ . Thus, the
Bayesian optimization process as detailed in Algorithm 1 can

Figure 3: The auto encoder is trained first to learn the latent
low dimensional embedding. Then Bayesian optimization
is performed in this low dimensional space to search for
the optimal parameter. The decoder is used to reconstruct
the original 15 dimensional parameter in order to perform
physical simulation.

Figure 4: Simulation of the Tensegrity robot resulting in
different states when executing the same control for different
parameters.

be done efficiently in the low dimensional space. The decoder
can be seen as a learned non-linear version of the projection
matrix A in REMBO.

Experimental Results
Setup: This experiment aims to identify the 15 parameters
of the T6 model of the Tensegrity SuperBall robot in NASA’s
Tensegrity Robotics Toolkit (NTRT). The complex dynamics
and high dimensionality of the robot make this problem very
hard. Fig. 4 shows an example of the different results of
applying the same control to the robot with 1% difference
in the rod length (one of the 15 parameters). In absence of
access to the real robot, the default values of the T6 model in
NTRT are used as ground-truth. The Guided Policy Search
(GPS) algorithm (Levine and Abbeel, 2014) was used to
discover fast trajectories of several flops through iterative
exploration and refinement (GPS controller).

The Greedy Entropy Search (GES) method is compared
against random search, where random values of the parame-
ters are selected within the ± 10% range. Nevertheless, it is
well-known that Bayesian optimization in high dimensions is
difficult due to the exponential growth of the search space. To
deal with this issue, the two dimensionality reduction meth-
ods, REMBO and VAE are used to reduce the dimensionality
of the parameter space from 15 to 5.
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Figure 5: Test trajectory errors of different methods for the
Tensegrity robot as a function of time budget for the pa-
rameter optimization process. Greedy Entropy Search in the
5-dimensional space using VAE achieves the lowest trajec-
tory error, outperforming random search and Greedy Entropy
Search in the original 15 dimensional space, as well as Greedy
Entropy Search in the 5-dimensional space using REMBO.

The encoder and decoder of the VAE used in the experi-
ment are both two-layer neural networks. The input dimen-
sion of the encoder and the output dimension of the decoder
is 15, which is the dimension of the parameter space. The
latent space is 5 dimensional. Between them is one layer
of 400 dimensions. This dimension is chosen through cross
validation by balancing accuracy and network complexity.
The prior distribution of the latent space in the VAE is as-
sumed to be N(0,1). Based on the three-sigma rule, when
sampling between [−3,3], this interval should cover 99.7%
of the latent space when the VAE is optimized. For REMBO,
each time a random projection matrix is generated to project
the parameters into [0,1].

To train the VAE, 10,000 training trajectories are gener-
ated. These trajectories are generated by running the GPS
controller in the simulator with different physical parame-
ters and adding random noise of up to ± 10% to the default
parameter values. This means each trajectory is generated
under slightly different physical parameters.
Results: Fig. 5 shows the average error between the tra-
jectories using the model parameters identified by different
methods and the trajectories generated from the ground-truth
simulator. When optimizing in the original 15-dim. space,
as a data-efficient global optimization method, Bayesian
optimization with Greedy Entropy Search outperformed
random search. Further improvements are achieved by di-
mensionality reduction, making the search more efficient.
Greedy Entropy Search in the 5-dimensional space using
VAE achieves the lowest trajectory error, outperforming the
method using REMBO. This shows that a learned better la-
tent embedding enables more efficient parameter search in
the Bayesian optimization process. A video showing exam-

ples of the Tensegrity robot locomotion can be found on
https://youtu.be/lD31s0c tqM.

Fig. 6 provides the errors for each of the parameter as a
function of time budget for the parameter optimization pro-
cess. Only the combination of Greedy Entropy Search with
VAE achieves close to 1% error for all parameters. Some
parameters may have stronger influence on the robot dynam-
ics. An intelligent way to identify these parameters would be
helpful to reduce the dimensionality of the parameter space
and could be more informative than random embeddings.
This will be a direction for future work.

Conclusion
This work proposes an information and data efficient frame-
work for identifying physical parameters critical for robotic
tasks, such as compliant robot locomotion. The framework
aims to minimize the error between trajectories observed in
experiments and those generated by a physics engine. To
minimize the number of needed experiments, a Greedy vari-
ant of Entropy Search is proposed, which is shown to be
data efficient. To solve high-dimensional challenges, this
work integrates Greedy Entropy Search with a projection
to a lower-dimensional space through random embedding or
learning a latent embedding utilizing variational auto encoder.
The evaluation of the proposed method against alternatives
is favorable both in terms of identifying parameters more
efficiently, as well as resulting in more accurate locomotion
trajectories.

An interesting extension of this work would involve the
identification of controls during the learning process that help
in quickly minimizing the error. This can be a robust control
process, which takes advantage of Bayesian Optimization’s
output in terms of a belief distribution for the identified pa-
rameters, so as to minimize entropy and maximize the safety
of the experimentation process. Furthermore, it is interesting
to compare the generality of the learned models and resulting
control schemes that utilize them against completely model-
free and end-to-end approaches for reinforcement learning
and control.
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On Chatbots Exhibiting Goal-Directed
Autonomy in Dynamic Environments

Biplav Srivastava
IBM Research

Abstract
Conversation interfaces (CIs), or chatbots, are a popular
form of intelligent agents that engage humans in task-
oriented or informal conversation. In this position paper
and demonstration, we argue that chatbots working in
dynamic environments, like with sensor data, can not
only serve as a promising platform to research issues
at the intersection of learning, reasoning, representation
and execution for goal-directed autonomy; but also han-
dle non-trivial business applications. We explore the un-
derlying issues in the context of Water Advisor, a pre-
liminary multi-modal conversation system that can ac-
cess and explain water quality data.

Introduction
Chatbots (McTear, Callejas, and Griol 2016), which can en-
gage people in natural dialog conversation, have gained pop-
ularity recently drawn by numerous platforms to create them
quickly for any domain (Accenture 2016). Most common
types of such agents deal with a single user at a time and con-
duct informal conversation, answer the user’s questions or
provide recommendations in a given domain. They need to
handle uncertainties related to human behavior and natural
language, while conducting dialogs to achieve system goals.
Chatbots have been deployed in customer care in many in-
dustries where they are expected to save over $8 billion per
annum by 2022 (Juniper 2017).

However, the data sources used by common chatbots
are static databases like product catalogs or user manuals.
Therefore, for their problem of dialog management, i.e.,
creating dialog responses to user’s utterances, effective ap-
proaches include learning policies over predictable nature of
data(Young et al. 2013) or reasoning on its abstract represen-
tations (Inouye 2004).

The application scenarios become more compelling when
the chatbot works in a dynamic environment, e.g., with sen-
sor data, and interacts with groups of people, who come and
go, rather than only an individual at a time. In such situ-
ations, the agent has to execute actions to monitor the en-
vironment, model different users engaged in conversation
over time and track their intents, learn patterns and repre-
sent them, reason about best course of action given goals and

Copyright c⃝ 2018, Association for the Advancement of Artificial
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system state, and execute conversation or other multi-modal
actions.

We now explore the underlying issues of goal-directed au-
tonomy in dynamic environment in the context of Water Ad-
visor (WA) (Ellis et al. 2018), a prototypical multi-modal
conversation system that can access and explain water qual-
ity data to a variety of stake-holders. We identify opportuni-
ties for learning, reasoning, representation and execution in
WA and motivate more such applications.

Decision-Support for Water Usage With a
Multi-Modal Conversation Interface

The global situation of water quality around the world
is alarming in both developing and developed coun-
tries((UNEP) 2016) because water demand continues to rise
while existing sources for fresh water are getting polluted.
A key strategy for tackling water pollution is engaging peo-
ple. A person makes many daily decisions touching on water
usage activities like for profession (e.g., fishing, irrigation,
shipping), recreation (e.g, boating), wild life conservation
(e.g., dolphins) or just regular living (e.g., drinking, bathing,
washing). Accessible tools for public are particularly useful
to handle public health challenges such as the Flint water
crisis (Pieper, Tang, and Edwards 2017).

A decision in this space needs to consider the activity
(purpose) of the water use; relevant water quality param-
eters and their applicable regulatory standards for safety;
available measurement technology, process, skills and costs;
and actual data. There are further complication factors: there
may be overlapping regulations due to geography and ad-
ministrative scope; one may have to account for alternative
ways to measure a particular water quality parameter that
evolves over time; and water data can have issues like miss-
ing values or at different levels of granularity. The very few
tools available today target water experts such as WaterLive
mobile app for Australia 1, Bath app for UK2, and Gan-
gaWatch for India (Sandha, Srivastava, and Randhawa 2017)
and assume technical understanding of sciences.

1http://www.water.nsw.gov.au/realtime-data
22https://environment.data.gov.uk/bwq/profiles/
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Figure 1: A screenshot of Water Advisor. See video of it in action at https://youtu.be/z4x44sxC3zA.

Water Advisor
Water Advisor (WA) is intended to be a data-driven assis-
tant that can guide people without requiring any special wa-
ter expertise. One can trigger it via a conversation to get an
overview of water condition at a location, explore it by filter-
ing and zooming on a map, and seek details on demand (Fig-
ure 1) by exploring relevant regulations, data or other loca-
tions. The current prototype uses water quality data available
from Flint, MI3 but future extensions will use open water
data from US Geological Survey4 (USGS) that is refreshed
for thousands of places in US per day. However, the num-
ber of water quality parameters, for which data is available,
varies widely between locations and over time, making gen-
eration of useful advice challenging. For regulations, WA
relies on information provided by multiple agencies at na-
tional (US, India) and state levels (Michigan, New York),
which has been consolidated for reuse5.

Technical Issues
In a water advising application, one or more users may need
to interact with the chatbot if handling a complex decision
like water contamination. The tool has to detect the user’s in-
formation goals and meet them at lowest cognitive cost. The
system uses a natural language classifier (NLC) to under-
stand user utterance, and its error rate varies with input. The
system has to decide whether to ask clarifying questions if it
has low confidence and there are many ways to respond. The
user may have preferences about how they specify an input
(like location) and the kind of response they want (visual v/s
textual). We discuss a range of issues below for exposition

3http://www.michigan.gov/flintwater/0,6092,7-345-
76292 76294 76297—,00.html

4https://waterdata.usgs.gov/nwis/current/?type=quality
5https://github.com/biplav-s/water-info

but note that the current WA prototype handles only a subset
of following integration issues.

Learning plays an important role in understanding user’s
utterance, finding reliable water data samples in the database
based on region and duration of interest, discovering issues
in water quality and improving overall performance over
time. In the prototype, for utterances, we use trained user
models from commercial systems and for water quality, a
simple regression method.

Representation is needed to map water’s usage purpose to
quality parameters and model safe limits of pollution param-
eters with different mathematic properties (e.g., polarity). It
also helps map water purpose to regulations and further, ag-
gregate and reconcile the latter when a region falls under
overlapping jurisdiction of regulations. We represent this as
geographically-scoped attribute-value pair in JSON format
and make it publicly available for others to use and extend6.

Reasoning is crucial to keep conversation focused based
on system usability goals and user needs. One can model
cognitive costs to user based on alternative system response
choices and seek to optimize short-term and long-term be-
havior. Reasoning can further help to short-list regulations
based on water activity and region of interest, generate ad-
vice and track explanations. We currently use rules on geo-
graphical scope and missing values to determine system re-
sponse.

Execution is autonomous as the agent can choose to act
by (a) asking clarifying questions about water usage goals
or locations, (b) asking user’s preference about advice, (c)
seeking most reliable water data for region and time interval
of interest from available external data sources, and corre-

6https://github.com/biplav-s/water-info
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sponding subset of compatible regulations (d) invoking rea-
soning to generate an advice for water usage using filtered
water data and regulations, (e) visualizing and explaining its
output using water regulations, and (f) using one or more
suitable modalities available at any turn of user interaction,
i.e., chat, maps and document views. The current prototype
uses a simplistic strategy for execution based on error rates,
system confidence and usability rules.

Human Usability Factors have to be modeled and sup-
ported during WA’s operation. In the current prototype, the
user-interface controller module automatically keeps the dif-
ferent modalities synchronized so that the user is looking at
consistent information across them. The system has to be
aware of missing data or assumptions it is making, and needs
to take them into account while communicating output ad-
vice in generated natural language. One avenue for future
exploration is to measure and track complexity of interaction
(Liao, Srivastava, and Kapanipathi 2017) and use sensed sig-
nals to pro-actively improve user experience. Another is to
combine close-ended and open-ended questioning strategies
for efficient interaction (Zhang, Liao, and Srivastava 2018).

Ethical Issues can emerge whenever a piece of technology
is used among people at large. In the context of conversa-
tions, a recent paper surveys ethical issues (Henderson et al.
2018) like biases, adversarial examples, privacy violations,
safety challenges and reproducibility concerns. A water-use
chatbot can conceivably create bias among users of differ-
ent activity subgroups (e.g., preferring recreation over drink-
ing), compromise on privacy of users who submit queries
about an activity or a region, and create public safety con-
cerns (e.g., when users find scarcity of good quality water).
We have not considered them in the prototype, however.

Discussion and Conclusion
In this paper, we used decision-support in water as a use-
case to demonstrate that chatbots can serve as a promising
platform to integrate AI sub-disciplines for goal-directed au-
tonomy. Apart from learning, reasoning, representation and
execution, chatbots also need to work with human usabil-
ity factors and ethical issues. An interesting aspect of these
applications is that the chatbot may be helping a group of
people take collective decision making, like conducting an
interview, and data changes over time. Beyond water and
customer support, complex applications are emerging in sci-
ences (astronomy(Kephart et al. 2018)), business (career
counseling7, hospitality8) and societal domains (health9).
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Young, S.; Gašić, M.; Thomson, B.; and Williams, J. D.
2013. Pomdp-based statistical spoken dialog systems: A re-
view. Proceedings of the IEEE 101(5):1160–1179.
Zhang, Y.; Liao, V.; and Srivastava, B. 2018. Towards an
optimal dialog strategy for information retrieval using both
open-ended and close-ended questions. In Proc. Intelligent
User Interfaces (IUI 2018, Tokyo, Japan, March.

590
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Abstract

Magicians have been a source of entertainment for
many centuries, with the ability to play on human bias,
and perception to create an entertaining experience.
There has been rapid growth in robotics throughout
industrial applications; where primary challenges in-
clude improving human-robot interaction, and robotic
perception. Despite preliminary work in expressive AI,
which aims to use AI for entertainment; there has not
been direct application of fully embodied autonomous
agents (vision, speech, learning, planning) to enter-
tainment domains. This paper describes preliminary
work towards the use of magic tricks as a method
for developing fully-embodied autonomous agents. A
card trick is developed requiring vision, communica-
tion, interaction, and learning capabilities all of which
are coordinated using our script representation. Our
work is evaluated quantitatively through experimen-
tation, and qualitatively through acquiring 2nd place
at the 2016 IROS Humanoid Application Challenge.
A video of the live performance can be found at
https://youtu.be/OMpcmcPWAVM.

Introduction
Humans have long enjoyed the clever trickery that comes
from a good magic show. Magic tricks embody the primary
features desired for an intelligent agent. These include reac-
tivity: the ability to quickly perceive and respond to changes
in the environment; proactivity: being goal-driven and act-
ing towards reaching some desired goal; and social ability:
the ability to communicate with others to further reach their
goal (Wooldridge 2009).

Non-deterministic and dynamic environments pose chal-
lenges in developing robust autonomous agents that possess
these features. This difficulty lies in balancing the proactive
and reactive behaviour (Wooldridge 2009). An agent that is
purely reactive may fail to reach a desired goal, whereas a
purely proactive (goal driven) agent may not spend enough
time acting to reach a goal (Wooldridge 2009).

During a live performance, reactivity is desired to provide
authentic response time for each event in the script. Proac-
tiveness involves seeking an end-performance goal that log-

Copyright c⃝ 2018, Association for the Advancement of Artificial
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ically entails from the events in the script. The script is cen-
tral to both reactivity and proactiveness. Lastly, social abil-
ity is required to leverage off the audience and guide a per-
formance to cater towards their demographic and play off
of their bias. For example, non-explicit humorous remarks
are prioritized for an audience containing youth. Our work
presents an autonomous agent that performs a magic card
trick. We created motion, speech, and vision components on
top of our custom DARwIn OP2 framework. These com-
ponents utilize PocketSphinx for speech recognition, and
OpenCV2 for playing card classification. The use of a finite
state machine gives structure to the performance and allows
the agent to seek an end-performance goal that accounts for
potential problems that may arise during the show. Lastly, an
easily adjustable design of events allows for a unique perfor-
mance and user experience.

Related Work
Live performance takes many forms. Humanoid robotics
competitions have explored the development of robust, ver-
satile agents that perform multiple distinct sporting events
autonomously (Baltes et al. 2016). Furthermore, teams of
robots are used to research how cooperation techniques are
used in reaching a desired goal (Ashar et al. 2015). Such
competitions have grown in popularity and have evolved to
use more entertaining events that remain as useful bench-
marks (Gerndt et al. 2015), but do not yet cater easily to a
non-research audience.

Expressive AI has explored artificial intelligence for
pure entertainment purposes in domains that include games
(Mateas 2003) and music (De Mántaras and Arcos 2002);
but lacks a robotics implementation. In the domain of
Robotics, work has been done on incorporating entertain-
ment (Kuroki 2001) with further specialization into card
magic (Koretake, Kaneko, and Higashimori 2015). This
work however puts focus on card manipulation, and mechan-
ical aspects rather than timing and interaction. There has
been growing discussion of the need for timing and human-
robot interaction for effective live performance (Nuñez et al.
2014; Tamura, Yano, and Osumi 2014); but this discussion
has been purely theoretical. Our work outlines a new appli-
cation of robot entertainment for live magic that incorporates
computer vision, machine learning, speech recognition and
motion in order to deliver an authentic and robust perfor-
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Figure 1: The live performance at IROS 2016. The robot is
about to reveal the cards.

mance.
Employing template-matching for playing card recogni-

tion has demonstrated higher overall classification accuracy,
but only in settings where the card is viewed from a fixed
distance and angle (Brinks and White 2007). Similarly, this
approach had significant latency (6 seconds) using a client-
server architecture and has not yet been tested on a local-
ized model (Brinks and White 2007). Work from (Zheng and
Green 2007) demonstrated higher rank classification accu-
racy along with robustness to card rotation and scale, how-
ever there is no evaluation of the overall classification ac-
curacy. Furthermore we achieved higher accuracy on Jack,
Queen, and King cards, along with higher suit accuracy.
Other approaches such as (Martins, Reis, and Teófilo 2011)
achieved higher rank classification; but share similar chal-
lenges in suit classification. Despite marginally lower per-
formance on rank classification, our system demonstrates
significant overall classification accuracy while being robust
to card rotation, translation, and scale.

The Magic Trick
The trick is based on the classic straight-man act, in which a
stern robot assistant contrasts with a charismatic but conde-
scending human magician. A DARwIn-OP2 robot is asked
to select and observe 3 cards from a deck. Vocal cues
from the human magician provoke responses from the robot.
Throughout the performance the robot grows impatient with
the magicians’ rude gestures and treatment, and takes over
the magic performance by knocking the deck out of the ma-
gicians’ hand. After the robot acquires the deck, the robot
explains the simplicity of the magic trick, and reveals the 3
cards that were originally chosen, from the face-down deck.

Problem Representation
We represent a performance as a collection of ordered
phases. A phase is some discrete set of events that must take
place together within a limited time. For example one phase
may involve multiple listen-response events where an agent
uses speech recognition and speech synthesis to follow dia-
log with a human magician. Another phase may rely on both
motion gestures to hold a deck of cards, and computer vision
to recognize playing cards.

Grouping events into phases allows for a graceful recov-
ery from potential interrupts in the performance. If, for ex-
ample, a dialog-only phase is taking place, and noise inter-

Figure 2: Phases of the performance

Figure 3: Control flow of speech processing

ference occurs, the agent may transfer to a backup phase
which involves asking where the noise is coming from. Dur-
ing a card recognition phase that uses only the vision and
motion components, it would not make sense for the agent
to stop reading cards, or freeze up; because of the noise. It
would make sense to have a backup phase in case the light-
ing is poor, in which the agent may ask for better lighting.
The use of a state machine guides the performance by tran-
sitioning through pre-designed phases which together form
a coherent story.

Implementation
Speech Recognition and Synthesis
Voice audio was recorded using a NESSIE Adaptive USB
Condenser Microphone at 16kHz. Incoming audio is pro-
cessed using PocketSphinx in order to generate a hypothesis
string. This hypothesis string is checked against a custom
language dictionary containing 89 keywords from the magic
show script. If selected keywords are found in said string,
this will trigger a response from the robot. Each dialog event
may be customized to require multiple distinct keywords.

Vision
Input images are captured using the built-in DARwIn-OP2
Logitech camera and passed to a custom vision module. The
vision module was built with C++ and OpenCV2. The input
image is first preprocessed by gray scaling, applying blur,
and then applying a binary threshold. Contours are then ex-
tracted from the image and organized into a hierarchical tree
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Figure 4: The vision pipeline

Figure 5: The training process

and compressed with OpenCV’s simple chain approxima-
tion to gather only end-points of the contours. Polygon ap-
proximation is used on the contour to gather estimated cor-
ner points for a playing card. In order to eliminate false de-
tection, the points are checked to be rectangular(based on
the ratio between them). An affine transformation is used on
the card ROI. Due to symmetry of playing cards, the bot-
tom left corner is checked for a card symbol. If this symbol
is missing, the card is assumed to be mirrored, and will be
reflected to the correct orientation.

Card Classification Card suit (Diamonds, Hearts, Spades,
Clubs) and rank (1-10, Jack, King, Queen, Ace) ROI are
extracted. These ROI are then either dilated or eroded ac-
cording to lighting in the environment. The suit and rank
ROI are then classified using the K-Nearest Neighbours al-
gorithm (Cover and Hart 1967).

Machine Learning
The training process took place using a deck of 52 cards. The
initial training set contained 5images × 4suits × 13cards =
260 samples collected using the robots built-in camera. Each
sample is stored as a 30x30 gray-scale image in csv format
as a 1×900 matrix of pixel brightness values [0-255]. The K-
Nearest Neighbours algorithm (Cover and Hart 1967) is used
to classify each suit and rank. An iterative training process is
used. Initially each card within the full deck is shown in front
of the robot. If the card is correctly classified, it is placed
in a success pile. Misclassification may take place on either
the card rank or suit. In either case, the misclassification is
recorded and 2 positive samples of this rank or suit are added
to the training set. The card will then be placed in a fail pile.
For example if a Two of Hearts is misclassified as a Two of
Diamonds, we will add 2 positive samples of the Hearts suit
to the training set. The next iteration will begin using cards
from the fail pile. This iterative process terminates when the
fail pile is empty.

Figure 6: The dynamic evaluation setup.

Evaluation
Our iterative training process was used, yielding the final
training set. The test set was then created by randomly
shuffling the deck and placing each card in front of the
robot. This process was repeated 5 times to create a total
of 5samples × 13ranks = 65 test samples for each suit, and
5samples × 4suits = 20 test samples for each rank. Evalua-
tion was first completed in a dynamic setting. This included
exposure to daylight, and randomization from a human hold-
ing the card in front of the robot. A second controlled eval-
uation consisted of static lighting, and a fixed placement of
each card on a black surface.

A rank classification accuracy of 89.23% across the 13
card ranks was achieved using the dynamic setting. This
surpassed the controlled setting which achieved 83.46% ac-
curacy. Similarly the dynamic setting achieved a higher
classification accuracy (90.38%) than the controlled setting
(83.46%) on card suits. It is interesting to note the difference
in spread between the two evaluations. The controlled set-
ting has a higher standard deviation (10.76% for card rank,
15.99% for card suit) than the dynamic setting (4.07% for
card rank, 11.15% for card suit). We believe this is due to
our system being trained in a more dynamic setting.

Conclusions and Future Work
This work explored the use of live entertainment in agent-
based research. Specifically live magic performance was
chosen as an avenue for developing a fully-embodied au-
tonomous agent. Our card trick incorporates on-board vi-
sion, communication, interaction, and learning capabilities
that allow for robust performance. This work may be greatly
enhanced with improvements to the vision and machine
learning components. Overall classification accuracy is de-
pendent on both rank and suit accuracy. Our method demon-
strated robustness to card rotation, translation and scale;
but fell short in overall accuracy. We share similar chal-
lenges to other aforementioned vision techniques (Brinks
and White 2007; Zheng and Green 2007; Martins, Reis, and
Teófilo 2011), and believe improvements to image resolution
would combat these challenges. Similarly, we see the use
of colour recognition as a simple and promising approach
to improve suit classification accuracy (Martins, Reis, and
Teófilo 2011). Such improvements are challenging to ac-
quire under time and space constraints imposed by on-board
hardware. Lastly, we are interested in generalizing our work
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Figure 7: Classification results for card ranks. Taken from 20 samples of each card rank.

Figure 8: Classification results for card suits. Taken from 60
samples of each card suit.

into a framework for building agents capable of live perfor-
mance. We believe this framework would provide easier en-
try, and thus encourage agent-based research using live en-
tertainment.
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Abstract

This paper describes our approach to integrating rep-
resentation, reasoning, learning, and execution in our
data-mining robots by exploiting micro-clusters to close
the loop of the KDD process model. Based on our sev-
eral kinds of autonomous mobile robots that monitor
humans with Kinect and discover patterns, we are work-
ing on designing data-mining robots, each of which
makes trials and errors in its data observation, data pro-
cessing, pattern extraction, and mobile explorations. In
other words, the robots continuously refine their goals at
the micro-cluster level. We briefly discuss our four re-
search directions, i.e., the balance between the exploita-
tion and the exploration, the use of weak labels, the any-
time algorithm, and the countermeasure to the concept
drift, and describe potential, promising approaches for
some of them.

Data-Mining Robots for Human Monitoring
We have constructed several kinds of autonomous mobile
robots that monitor humans with Kinect and discover pat-
terns. For instance, one to three robots, either a TurtleBot 2
or a hand-crafted robot each with Kobuki, jointly monitor
a walking human, typically with elderly-experience equip-
ment, to discover fall risks by clustering his/her skeletons
(Deguchi et al. 2017; Takayama et al. 2014). Another ex-
ample is a TurtleBot 2 with Kobuki that clusters facial ex-
pressions to discover smiling, yawning, and reading clusters
of a desk worker (Kondo, Deguchi, and Suzuki 2014). This
robot was later used to detect his/her hidden fatigue by clus-
tering classifiers of neutral faces and smiling faces, which
were observed every 30 minutes with their weak class labels
input through a wireless mouse (Deguchi and Suzuki 2015).
Figure 1 shows snapshots of these robots in the respective
series of experiments.

All these robots represent the monitored person with mi-
cro clusters, which are learnt based on procedures similar
to BIRCH, a hierarchical clustering algorithm (Zhang, Ra-
makrishnan, and Livny 1997; Han, Kamber, and Pei 2012).
A micro cluster, which represents a group of similar exam-
ples each described with a set of numerical features, in its

Copyright c⃝ 2018, Association for the Advancement of Artificial
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original form is a triplet (n,v, s), where n, v, and s re-
spectively represent the number of examples in the micro
cluster, the add-sum of the examples in the micro cluster,
and the add-sum of the squared L2-norm of the examples in
the micro cluster (Zhang, Ramakrishnan, and Livny 1997).
This triplet is called a Clustering Feature (CF) vector and
has virtues of enabling an exact, incremental update and a
reproduction of various cluster-wise distances without using
the original examples. We initially adopted this approach to
cluster colors of subimages observed by an autonomous mo-
bile robot (Suzuki, Matsumoto, and Kouno 2012), and then
extended the idea to cluster skeletons (Deguchi et al. 2017;
Takayama et al. 2014), facial expressions (Kondo, Deguchi,
and Suzuki 2014), and linear classifiers (Deguchi and Suzuki
2015). In these applications, an example is represented by a
point in an Euclidean space spanned by the vectors of fea-
tures, e.g., instability features described with skeleton joints
inferred by Kinect (Deguchi et al. 2017; Takayama et al.
2014), action units inferred by Kinect to code emotional fa-
cial expressions (Kondo, Deguchi, and Suzuki 2014), coef-
ficients of a logistic repression classifier to discriminate be-
tween neutral faces and smiling faces (Deguchi and Suzuki
2015).

Currently, we are working on extending our robots to
data-mining robots, each of which makes trials and errors in
its data observation, data processing, pattern extraction, and
mobile explorations. The idea comes from the Knowledge
Discovery in Databases (KDD) process model (Fayyad,
Piatetsky-Shapiro, and Smyth 1996) shown in Figure 2. The
Knowledge Discovery in Databases (KDD) process model
states that a data mining process can be modeled as a series
of several kinds of pre-/post-processing and pattern extrac-
tion. Our application domain is on a TurtleBot with Kobuki
equipped with Kinect ver. 2 that continuously navigates in-
side a 90-m2 room, observes desk workers, report discov-
ered patterns to them, and receives their comments as re-
wards through its mouse. We believe that our data-mining
robots are still goal-oriented, though their goals are unclear
at the pattern level during their operations due to the nature
of the KDD process model.

Exploiting Micro-Clusters to Close The Loop
Our previous robots either neglect the discovered pat-
terns and micro-clusters or use them through static proce-
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Figure 1: Snapshots of our autonomous mobile robots that monitor humans with Kinect and discover patterns. (Top left) Turtle-
Bot 2 with Kobuki clusters facial expressions to discover smiling, yawning, and reading clusters of a desk worker (Kondo,
Deguchi, and Suzuki 2014). (Right) Two TurtleBots 2 with Kobuki jointly monitor a walking human with elderly-experience
equipment to discover fall risks by clustering his/her skeletons (Deguchi et al. 2017; Takayama et al. 2014). (Bottom left)
TurtleBot 2 with Kobuki detects hidden fatigue of a desk worker by clustering classifiers of neutral faces and smiling faces,
which were observed every 30 minutes with their weak class labels input through a wireless mouse (Deguchi and Suzuki 2015).

dures (Deguchi et al. 2017; Takayama et al. 2014; Kondo,
Deguchi, and Suzuki 2014; Deguchi and Suzuki 2015). On
the other hand, our intended data-mining robots closes “The
Loop”, i.e., realizes the trials and errors of the KDD process
model especially by exploiting their results of the pattern
discovery in their data observation and mobile explorations.
In other words, the robots continuously refine their goals at
the micro-cluster level. We have adopted four research di-
rections: the balance between the exploitation and the ex-
ploration, the use of weak labels, the anytime algorithm, and
the countermeasure to the concept drift.

Realizing the balance between the exploitation and the ex-
ploration requires care in our application due to the difficulty
in estimating the interestingness of a discovered pattern in
data mining. Though we have already built naive methods,
e.g., moving to observe from a different angle when the set
of micro clusters reaches a pre-defined degree of stability,
the reward given by humans is not necessarily related to such
diversity and how to estimate the correct, new angle for ob-
servation is unclear. Note that we are mostly faced with sig-
nal data, as the symbol grounding problem is far from being
resolved. Modeling the diversity related to the interesting-
ness would be the next step, though the exploration for new
data would remain hard-wired.

We define a weak label as a piece of information related
with supervisory signal, or the desired output value. It could
be a class label of a bag of examples in the multiple instance
learning, a class label in relevant learning tasks in multi-
task or transfer learning, a (probabilistic) constraint on the

target class labels in classification. See for instance (Mann
and McCallum 2010). In our problem, the reward by a desk
workers is rarely given, even if our robot reports an interest-
ing pattern. We have recently developed a one-class selective
transfer machine for personalized anomalous facial expres-
sion detection (Fujita, Matsukawa, and Suzuki 2018), which
would be useful in both designing how to exploit weak la-
bels and using the detected anomalous facial expressions as
weak labels.

Naturally, our robot has to adopt an anytime algorithm,
e.g., (Ueno et al. 2006), which can return the so-far best
output anytime by using the available resources, especially
the computation time. In BIRCH (Zhang, Ramakrishnan,
and Livny 1997; Han, Kamber, and Pei 2012) and our dis-
covery robots (Deguchi et al. 2017; Takayama et al. 2014;
Kondo, Deguchi, and Suzuki 2014; Deguchi and Suzuki
2015), the micro-clusters are managed by a Clustering Fea-
ture (CF) tree, which may be viewed as a result of hierarchi-
cal clustering (Han, Kamber, and Pei 2012). Handling and
reporting the micro-clusters in an intermediate level of the
CF tree is a naive but natural solution. The closing the loop
problem dictates that this research direction is deeply related
with the first one: the balance between the exploitation and
the exploration. Combined with the other two problems, de-
signing an adequate anytime algorithm for our robots raises
numerous challenges, even if partial solutions exist in the
literature, e.g., (Ivanov, Blumberg, and Pentland: 2001).

Last but not least, our robot has to take a countermea-
sure to the concept drift, which is inherent in data stream
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Figure 2: KDD process model (adopted and modified from (Fayyad, Piatetsky-Shapiro, and Smyth 1996)).

mining (Krempl et al. 2014). The statuses of desk workers
change gradually or abruptly, though our robot platform in-
cluding its batteries and sensors is reliable and can be re-
garded as static. Comparing CF trees (Boubou, Hafez, and
Suzuki 2015) is in fact a nontrivial procedure and thus we
are rather seeking for another approach of managing a set of
micro-clusters.
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Abstract

General-purpose robots operating in a variety of environ-
ments, such as homes or hospitals, require a way to integrate
abstract knowledge that is generalizable across domains with
local, domain-specific observations. In this work, we exam-
ine different types and sources of data, with the goal of un-
derstanding how locally observed data and abstract knowl-
edge might be fused. We introduce the Situated Robot Knowl-
edge (SiRoK) framework that integrates probabilistic abstract
knowledge and semantic memory of the local environment.
In a series of robot and simulation experiments we examine
the tradeoffs in the reliability and generalization of both data
sources. Our robot experiments show that the variability of
object properties and locations in our knowledge base is in-
dicative of the time it takes to generalize a concept and its
validity in the real world. The results of our simulations back
that of our robot experiments, and give us insights into which
source of knowledge to use for 31 types of object classes that
exist in the real world.

Introduction
Robotics is undergoing a transition from the development of
specialized, single-task robots to general-purpose platforms
expected to operate in diverse and changing environments,
such as hospitals and homes. Operation in unconstrained hu-
man environments introduces many new challenges, one of
which is that of knowledge acquisition. On the one hand, the
diversity of target environments makes it impossible to pre-
code the robot with all the required knowledge (e.g., where
the towels are kept, that a particular bowl is made of metal),
requiring the robot to learn from observations on-site. On
the other, information often referred to as “common sense
knowledge”, can be transferred across domains (e.g., towels
are often found in bathrooms and closets, bowls are con-
tainers) (Speer and Havasi 2012). In this work, we examine
different types and sources of such data, to understand how

∗This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program under
Grant No. DGE-1650044. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Sci-
ence Foundation.
Copyright c⃝ 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: High-level view of SiRok framework.

locally observed data and abstract knowledge can be fused
to enable a robot to most effectively reason about its world.

As a motivating example, consider a robot placed in a new
home and tasked with fetching a glass of water. One ap-
proach is for the robot to rely entirely on local observations,
and to exhaustively search the environment for a glass and
sink. A human visitor to the home, however, would instead
be likely to first find a kitchen, then begin to open cabinets
(and not drawers) in order to find the glass. This behavior
would be guided by semantic, domain-independent knowl-
edge gathered from prior experiences, and a similar capabil-
ity would enable robots to more effectively adapt to new en-
vironments. However, local knowledge must also be incor-
porated into this reasoning, allowing adaptation to domain-
specific patterns or the current state of the world, such as
when the glasses have already been set out on the table, or
in houses with unconventional item storage areas. In order
to support a robust deployment model, we must better un-
derstand the limits of both local and abstract data.

In this work, we consider two sources of knowledge: ab-
stract knowledge and local knowledge. We characterize ab-
stract knowledge as domain-independent information that
generalizes across many environments (e.g., food in typi-
cal homes can be found in the refrigerator in the kitchen).
Specifically, we use commonsense information from Con-
ceptNet (Speer and Havasi 2012) and WordNet (Miller
1995) to allow the robot to reason about novel objects and
environments. We characterize local knowledge as informa-
tion the robot has perceived in its current environment. This
includes information obtained from its sensors (e.g., cam-
era, laser, etc.), including object recognition, semantic lo-
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cations, and object properties. From these data sources we
generate two separate knowledge bases, the Abstract Knowl-
edge Base (AKB) and the Local Knowledge Base (LKB),
which the robot uses to reason about the world. Combined,
these components make up the Situated Robot Knowledge
(SiRoK) framework (Fig. 1).

Our work makes the following contributions. First, we in-
troduce a domain-independent framework for automatically
retrieving common-sense knowledge for a given environ-
ment. We use object labels, obtained from object recogni-
tion, to generate seed words, which are then used to query
existing semantic knowledge bases to construct a probabilis-
tic model representing object type, location, and property
data. Second, in a series of robot and simulation experiments
we examine in what situations the abstract and local knowl-
edge sources are most reliable for objects with both mutable
and immutable properties. Our results show that variabil-
ity is a key heuristic to take into account when evaluating
knowledge sources. In particular, as variability increases, we
should emphasize sources of general knowledge. For cases
with extreme levels of variability, a robot should rely on
direct observations or chance. Our simulations validate the
trends we see in our robot experiments, and extend our con-
clusions to 31 different classes of objects found in real-world
households.

Related Work
Numerous projects across the AI community have sought
to make use of commonsense and semantic knowledge.
Three large-scale commonsense knowledge networks used
across a wide range of applications are WordNet (Miller
1995), ConceptNet (Speer and Havasi 2012), and Research-
Cyc (Lenat 1995; Matuszek et al. 2006). WordNet consists
of a collection of synsets, which connect concepts hierarchi-
cally through the IsA relation. WordNet also distinguishes
between different senses of the same word and provides
glosses, or definitions, for each sense. While WordNet is
clean and hand-coded, it also lacks diversity in the types of
relations it contains. ConceptNet, on the other hand, contains
several dozen different relations, but it does not distinguish
between word senses and is largely crowdsourced, leading
to a large amount of noise. ResearchCyc uses an even larger
number of relations (currently around 17,000) to connect
concepts. For the purposes of this work, we choose to use
data from WordNet and ConceptNet to take advantage of
the complimentary benefits of each.

In other work, Zhu, et al. (Zhu, Fathi, and Fei-Fei 2014a)
perform affordance prediction on a set of images by using a
Markov Logic Network (MLN) (Richardson and Domingos
2006a) to represent affordance knowledge. This work also
does not deal with context and used hand-selected objects
and affordances in the network. In (Chen and Liu 2011),
contextual noise is addressed by disambiguating the con-
cepts in ConceptNet to enrich the WordNet senses with
more diverse knowledge for improved performance on word
sense disambiguation tasks. While disambiguating Concept-
Net helped provide context for each of its concepts, the re-
sulting knowledge base contained only abstract information.
In contrast to this approach, (Stoica and Hearst 2004) did

Figure 2: System architecture for the Situated Robot Knowl-
edge (SiRoK) framework. The pipeline starts with environ-
ment data that is used to populate the AKB and LKB

construct a situated knowledge hierarchy in a (nearly) auto-
mated way, however, the resulting model only included hy-
pernyms (the IsA relation).

Within robotics, the KnowRob (Tenorth and Beetz 2009)
and RoboBrain (Saxena et al. 2014) projects are most
closely related to our work. In KnowRob, the authors cre-
ate a knowledge network from a variety of encyclopedic
sources and represented the network using Prolog rules and
the Web Ontology Language. This network is then used to
repair robot task plans by filling in missing low-level de-
tails from high-level task descriptions. In RoboBrain, the au-
thors generate a multimodal knowledge network for robotics
using data collected automatically from the web. The re-
sulting network is abstract and does not account for the
domain-specific details relevant to the situational context of
the robot. The RoboEarth project focused on the creation
of a cloud repository of generalizable robot knowledge, in-
cluding object models and robot task descriptions, that could
be transferred across robot platforms and domains (Waibel
et al. 2011). While these works deal with both abstract and
situated knowledge, none of them investigate which knowl-
edge source to leverage when. Our efforts focus on under-
standing which knowledge source a robot should use given
some query (e.g. where is the plant) which may be part of a
higher-level task. We conclude that the variability of a given
piece of information impacts the reliability of obtaining it
from either local or abstract sources.

SiRoK System Architecture
The SiRoK framework is implemented as a system of in-
terconnected modules, which communicate using ROS. The
system has three main components (Fig. 2): AKB, LKB ,
and Data Source Selection, each of which contains a series
of subsystems that aggregate and process data. At a high-
level, the pipeline begins by performing object detection,
where objects in the environment are assigned an object
class labels (e.g., cups, bowls, etc.). These generated class
names become seed words that are used to extract informa-
tion from online commonsense networks to build an AKB.
These object class labels are also used during grounding,
where specific object information is stored into the LKB. In
Data Source Selection, the robot uses specific queries to ask
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Figure 3: Classes and object data in the AKB and LKB

Figure 4: An example of abstract knowledge represented us-
ing a Bayesian Logic Network (BLN)

for information from AKB and LKB and fuses the results to
respond to the queries. In the remainder of this section, we
describe each subsystem in detail and the full system dia-
gram can be found in Fig. 2. The colors of each component
in Fig. 2 match the high-level view in Fig. 1.

Object Detection
For object detection, we used the open source real-time
object detection system YOLOv2 (Redmon et al. 2016).
YOLOv2 uses a convolutional neural network and computes
the location and classification of each object in an image in
a single pass. It does this by dividing the image into cells,
calculating an objectness score and then object classifica-
tion probabilities over the individual cells, it then using an-
chor boxes to predict the object bounding boxes. We tested
YOLOv2 on PASCAL VOC2012, achieving a mAP (mean
average precision) score of 73.4. For our robot experiments,
we trained YOLOv2 on the subset of COCO (Lin et al. 2014)
object classes which are specific to the home environment
(Fig. 3). Each time the system recognizes the object, the ob-
ject label, bounding box of the object, and raw rectangle seg-
ment of the object is sent to the LKB. The object labels are
also passed to the AKB.

Abstract Knowledge Base
We represent the robot’s AKB as a Bayesian Logic Network
(BLN) (Jain, Waldherr, and Beetz 2009), a directed statisti-
cal relational model in which the variables under consider-
ation are represented as first-order terms or predicates with
arguments. BLNs allow logical constraints, represented as
first-order logic rules, to be imposed on the network. Prior
work in computer vision has utilized Markov Logic Net-
works (Richardson and Domingos 2006b), a representation
that unifies Markov Random Fields and first-order logic, for
modeling object attributes and affordances (Zhu, Fathi, and
Fei-Fei 2014b). However, parameter learning in MLNs is an
ill-posed problem (Jain, Kirchlechner, and Beetz 2007) and
approximate inference is expensive even for simple queries.

In contrast, BLNs are easy to train, more efficient and have
scaled better to our application. Fig. 4 shows a small ex-
ample BLN, which, once constructed, can be used to per-
form inference using likelihood weighting (Fung and Chang
2013) to answer queries such as AtLocation(Objecti, x) or
HasProperty(Objecti, x).

To construct the BLN, we leverage information from two
online sources of semantic knowledge, WordNet (Miller
1995) and ConceptNet (Speer and Havasi 2012). Word-
Net is a low-noise hand-crafted collection of sets of cogni-
tive synonyms (synsets), each expressing a distinct concept
(e.g., spoon) and related to other concepts through hyper-
nym (the IsA relation, e.g., IsA(spoon, utensil)). Concept-
Net is an auto-generated commonsense knowledge bank; it
does not differentiate between word senses but groups all
within a single concept node related to others through mul-
tiple possible relations. For example, for the object mouse,
ConceptNet returns AtLocation(mouse,office) and HasProp-
erty(mouse, organic), highlighting the need to perform sense
disambiguation to correctly parse this data.

Given seed words obtained from object recognition labels,
we first perform sense disambiguation using the technique in
(Tsatsaronis, Varlamis, and Vazirgiannis 2008), by finding
the sense of each word that maximizes the overall similarity
between the seed words (leveraging the fact that the words
come from the same context). We then query WordNet and
ConceptNet for semantic data related to each disambiguated
word. Importantly, the seeds words not only provide a start-
ing point for data retrieval, but together act as context for the
robot’s specific environment. Currently, we retrieve data for
three relations, which we selected due to their usefulness in
robot task execution.
• IsA: determines the relationship between an object and its

hypernym (e.g., IsA(bowl, container)), allowing the robot
to reason over object categories.

• AtLocation: determines the relationship between an object
and locations in the world. (e.g., AtLocation(bowl, sink),
allowing the robot to query likely object locations.

• HasProperty: determines the relationship between an ob-
ject and properties such as materials, shape, and colors
(e.g., HasProperty(bowl, ceramic), HasProperty(bowl,
red), aiding in recognition and allowing the robot to rea-
son about possible object uses (e.g. metal objects should
not be placed in the microwave).
For each relation, we calculate a likelihood based on a

weighted combination of the relation score from Concept-
Net and the Explicit Semantic Analysis relatedness measure
(Gabrilovich and Markovitch 2007) between the two con-
cepts in the relation. This likelihood provides an initial es-
timate for the real-world probability of a given relationship
and enables us to generate training evidence for BLN based
on the distribution. Relations that cannot be sampled directly
are inferred logically using transitive prolog rules. For addi-
tional details, see (Garrison and Chernova 2016).

Local Knowledge Base
LKB Data Structure We represent the robot’s local envi-
ronment through a collection of object instances, forming a
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Figure 5: Topological map.

memory of encountered items, and their locations and prop-
erties. For o ∈ O, each object class out of the set of objects
known to the robot (listed in Fig. 3), we store i instances of
that object within the LKB, where an instance is defined as
a unique object.

The LKB is implemented using PyTables and HDF5; each
object class o is stored as a database, with a table gener-
ated for each object instance. For each instance, we currently
store the object label, previously seen locations (pose and
semantic label), image region corresponding to the bound-
ing box from object recognition, visual information (RGB-
D values), and all properties known about the instance (e.g,
color, material). The resulting representation provides a scal-
able memory system that allows for efficient retrieval of all
of its recent memories of instances.

Grounding In addition to using object recognition for ob-
ject class labels (e.g., bottle), the robot must distinguish dif-
ferent instances of the same class (e.g., red bottle vs yellow
bottle). The grounding component of SiRoK uses features
distinct to instances of an object class to distinguish among
multiple instances. This form of grounding, from here on
referred to as instance grounding, was implemented using
a K-Nearest Neighbors (KNN) classifier with a threshold
distance to accommodate new instances of a class. Our im-
plementation relies on color properties, extracted from the
bounding box region of the image using the GrabCut algo-
rithm (Rother, Kolmogorov, and Blake 2004) and uses KNN
to determine whether an object is a new instance. Ground-
ing enables the robot to perform color-based differentiation
of objects, which we leverage in our study. In future work,
we will expand instance grounding to incorporate spatial and
temporal information about objects, as well as a wider vari-
ety of features.

Semantic Location In order to effectively generalize lo-
cal information and relate it to abstract knowledge, we re-
quire a method for converting the robot’s world coordinates
to semantic location labels (e.g., kitchen counter). To pro-
vide a semantic location for an object, we utilize a hybrid
map (Buschka and Saffiotti 2004), which links a topological
map, consisting of a tree graph representing human domain
knowledge, with a metric map of spatial locations in the en-
vironment. Fig. 5 and Fig. 6 show the topological and metric
maps used in this work. The links between the topological
map and metric map are expressed directly in the topologi-
cal map nodes; association of each node with a volume in the
metric map. This map structure enables the robot to obtain
a semantic label for any 3D point that is hierarchical (e.g.,
object o is in a drawer in the kitchen in the apartment).

Property Extraction As discussed above, SiRoK enables
the robot to reason about a range of object properties, in-

Figure 6: Metric map with an overlay of the spatial volumes
associated with nodes in the topological map.

cluding color, weight, material and shape. Through local ob-
servation, the robot is able to obtain some properties (e.g.,
color), while other important object characteristics (e.g., ma-
terial) are very difficult to determine for existing platforms.
Some complementary information, however, can often be
obtained from the AKB, which obtains property information
through ConceptNet. For each object, we assign a set of ob-
ject properties commonly learned and used by robots (Her-
mans, Rehg, and Bobick 2011; Sun, Bo, and Fox 2013;
Sinapov et al. 2014). These include color, shape, material,
and weight. The individual values that each object can take
on (e.g. blue, heavy, metal, etc.) can be found in Fig. 3.

While color is obtained using a simple color classifier,
we hand-label the shape and weight of the objects. With
the current state of the art we assume that these properties
can be obtained easily with good accuracy via existing ma-
chine learning algorithms and the use of pre-trained classi-
fiers (Chu, Fitzgerald, and Thomaz 2016; Sun, Bo, and Fox
2013; Sinapov et al. 2014). Future work will include explo-
ration of the objects using the robot’s arm and visual infor-
mation from the RGB-D camera to learn the object proper-
ties. However, material still remains to be one of the harder
properties to be learned. In this work, we can leverage a hu-
man in the environment to extract the material properties of
the objects.

In its existing form, the BLN contains far too many prop-
erty edges to simply verify each one with the human. Thus
we present an algorithm, which takes the existing BLN gen-
erated from ConceptNet and WordNet, and actively selects
a subset of property relations to verify with the human. This
results in a pruned representation that is consistent with the
specific objects in the current environment.

We first modify the BLN to include inter-property edges.
For all properties in the BLN, we add an edge if a relation
exists between them in ConceptNet. We then generate three
tables. Tmaterial: all material properties present in our BLN
(i.e., holds a relation with Material in the ConceptNet). For
the next two tables, we use the association index in Concept-
Net, a measure between 0 to 1 of how related two words are.
TON
assoc: holds all the association indices between an ON and

every property belonging to that object (we ignore proper-
ties with index < 0.07).Tinterprop: Let PO be a set such that
each p ∈ PO is a property of O, this table holds the inter-
property association indices between any two properties in
PO.
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Next, we systematically pick the properties to query an
expert for verifications. For each object, we query the expert
about property, p ∈ PO with the highest association index
in TON

assoc. If it is verified true and exists in Tmaterial, then
all other material properties belonging to that object are as-
sumed to be false and are not queried. We can also assume
the predecessors of that property are true for ON (e.g., if
Aluminum is true, then Metal can be assumed true). For the
successors, we assume their hasProperty relations are true
(e.g., Metal true, then Opaque true), but need to query the
successors with an IsA (e.g., if Metal true, still need to ask
about Aluminum). If a node in this isA set is verified to be
true, the rest are assumed to be false.

Next, query with the a property with the minimum inter-
property association index with p, to ask the most different
question next. Repeat this process until all the properties are
verified as true/false. We construct an expert-verified BLN,
vBLN, with all verified true properties. For evaluation we
will look to compare this verified BLN with a ground truth
BLN with a dissimilarity index, Idissimilarity , defined as:

Uncommon edges between ground truth and vBLN
Total number of unique edges in ground truth and vBLN

Data Source Selection
SiRoK uses knowledge from the AKB and LKB to handle
object queries related either to (1) what the object is, (2)
where it is located, or (3) what properties it has. Within the
AKB, the BLN is queried for IsA, AtLocation, and HasProp-
erty information, and the results sorted by probability value.
The LKB answers AtLocation, and HasProperty queries by
using the stored outputs from semantic mapping and prop-
erty classification, returning a ranked list of the most fre-
quently encountered property. We note that, in general, loca-
tion and property information have different characteristics.
A specific object is likely to change location, possibly even
frequently, whereas most of the properties we consider, such
as color, are likely to change less often. Locations and prop-
erties also often generalize across instances (e.g., cups of the
same color or cups stored in the same cabinet), but this de-
pends on the variability of the object. In the next section, we
evaluate how our inference performs across these different
data types.

Robot Experiments
To evaluate the SiRoK system and examine the relative ap-
plicability of abstract knowledge and local knowledge, we
designed a series of experiments testing the robot’s ability
to predict object locations and properties. Our test environ-
ment resembles a simple apartment containing furniture and
different use areas, as seen in Fig. 6. For all experiments, we
use the robot platform, Prentice (Fig. 1). Prentice is an omni-
directional mobile robot and has a horizontally mounted li-
dar for navigation and a Microsoft Kinect2 RGB-D camera
mounted on a pan/tilt unit for visual sensing.1

1Note that we do not evaluate IsA queries on the robot due to
the highly abstract nature of the data. IsA results are reported in the
simulation section.

Building the Knowledge Bases
We populate an AKB by using the 31 possible class labels
shown in Fig, 3 to seed a BLN using ConceptNet and Word-
Net. As described in SiRoK System Architecture, these class
labels come from the COCO image dataset that are associ-
ated with kitchen and living rooms. We removed one label,
hot dog, due to WordNet disambiguating hot dog to sand-
wich. This is due to WordNet characterizing that hot dogs
are sandwiches, which is partially true (i.e., a hot dog is
a piece of meat between bread). Future work will address
how to take into account words that are part of the same hy-
pernym hierarchy. The constructed BLN contains 257 nodes
and 358 edges.

To gather data for the LKB, we used the following exper-
imental steps: (1) put object(s) in our testing environment,
(2) allow the robot to observe the environment and update
the LKB, (3) update the state of the object(s) in our environ-
ment, then repeat this process for the desired number of ob-
servations. After each observation, we evaluate the accuracy
for finding objects or naming object properties on a fixed test
set. To populate the semantic locations, we provide an expert
labeled semantic map that correlates to the described scene
in Fig. 6. We use a color classifier to label each object in the
test environment and the BLN for the object material. The
average classifier accuracy is 70% and average clarifications
needed for object property is 2.

If a human is available, SiRoK has the option to interac-
tively validate properties in the BLN. We performed 84 clar-
ifications to prune 50 edges in the vBLN from 195 property
edges using the human-verification algorithm mentioned in
Section III-C.4. While this is a large number of clarifica-
tions, during a deployment such queries could occur over a
length of time (multiple days) as the robot spends time learn-
ing about its environment. Moreover, our algorithm is cur-
rently limited by ConceptNet. ConceptNet lacks rich inter-
property knowledge (i.e. if an apple is sweet, one can as-
sume it is also juicy) and the notion of classes (i.e. sweet,
sour, spicy, tangy all belong to the same class of taste), the
number of queries is large. However, knowledge of material
class and good inter-property knowledge, it fared well for
bottle where only 3 queries were asked for 9 properties or
only 1 for 5 properties of cup. The final dissimilarity score of
the vBLN to ground truth object properties is 0.11 (6 edges
difference). This means that the BLN is only 6 edges (an
edge is between an object and a property) away from the
ground truth and managed to learn 50 out of the total 53
edges from the ground truth.

Experiments
We break down this section into two experiments: (1) find-
ing objects in the scene and (2) determine the properties of
objects. For both, we hypothesize that the role of variability
in object options is a primary factor in deciding when to use
abstract vs. locally learned knowledge. If an object moves
around more frequently, we should rely on reasoning about
where we might find the object as opposed to remembering
where was the last time or most frequently seen location. For
object properties, we expect to see a similar trend.
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Figure 7: Average accuracy (AKB vs. LKB) across 5000
permutations to predict the top 3 locations of potted plant
and bowl

Finding Objects For object location, we collect two sep-
arate sets of observations, one using a bowl and one using a
potted plant. The two objects can be seen in Fig 1. For each
object we collected 20 observations of the objects in vari-
ous locations in the kitchen and living room. We determined
the locations for each object using two different distributions
for each object, one with more movement and one with less
movement. The bowl was on the higher end of a variability
spectrum (table1: 20%, table4: 20%, counter: 12%, table2:
12%, table3: 12%, drawer1: 12%, drawer2: 12%), while the
potted plant object was on the lower end (table3: 50%, ta-
ble2: 25%, counter: 25%). Each time an object is detected by
the robot, the object’s semantic location is written to LKB.

To test and compare AKB and LKB, we randomly select
25% of the observations to leave out as the test set. This re-
sults in five observations in the test set and 15 in the train
set. We test the accuracy AKB and LKB incrementally by
introducing each observation separately. Specifically, we ask
AKB and LKB to predict the location of the 5 observations
in the test set after seeing one observations, two observa-
tions, and so on. AKB and LKB predict the locations by
providing a ranked list of possible locations as described in
Data Source Selection. We randomly select 5000 different
permutations of the observation order and report the average
accuracy and standard deviation to account for orderings ef-
fects. Note that the AKB is generated prior to seeing the ob-
servations as it represents general domain-free knowledge,
so the accuracy of the AKB does not change over observa-
tions.

The results of this test can be seen in Fig. 7 where the
robot turns the top three locations from its ranked list (sim-
ulating if the robot were allowed to look at three different
locations to find the object). We can see that for the potted
plant, the LKB reaches 80% accuracy by the fourth obser-
vation. However, for the bowl, the overall accuracy of the
LKB reaches only 65% for top three locations, which is only
slightly better than chance. When comparing AKB to LKB,
it is clear that in cases where there is low variability in the
current environment, learning about the object’s location is
superior to using general knowledge. However, for the bowl,
where locations are more varied, the AKB does a better job
of reasoning where in general might bowls be located. Fur-
thermore, for both cases, when there is little to no knowledge
of the scene, AKB still offers some insight to where the ob-
ject might be located as opposed to LKB. We observed the

Figure 8: The bottle outlined in long green dashes, solid blue
lines, and dotted red lines are plastic, metal, and glass re-
spectively. The bottles are colored from left-to-right as blue,
pink, green, blue, white, white, yellow, red, green, and green.

Figure 9: Average accuracy (AKB vs. LKB) across 5000
permutations for predicting the top property of 10 different
bottles for two different properties (color and material)

same trends when testing the top-one results, although with
lower overall performance rates.

Object Properties As described in Data Source Selection,
object properties are fixed to a specific instance. As a re-
sult, we test the robot’s ability to predict object properties
by using a fixed test set that is also the observation set. As
the robot observes its environment over time (similar to how
one gets acquainted to a new environment), all of the ob-
jects in the environment will be added to its observation set.
We select objects of the same class type (e.g., all bottles),
to determine if knowledge properties of specific objects can
provide insight on the general class of objects. Similar to
object locations, we hypothesize that the variability of pos-
sible values for a property affects when and how we use our
knowledge base. As a result, we select bottles with varying
levels of variance within its properties (i.e., color is highly
variable while materials is not). For this specific experiment,
we selected 10 bottles (Fig. 8). Specifically, they ranged in
color (green: 3, blue: 2, white: 2, yellow: 1, red: 1, pink:1)
and materials (plastic: 7, metal: 2, glass: 1) with color more
variable and material less.

The results of the test across the 10 bottles can be found
in Fig. 9 for both color and material. We limit the AKB and
LKB to just one guess as opposed to three for locations be-
cause for object properties, there is a higher threshold for
errors. While searching three different locations in a home
environment might take slightly longer, it is not unreason-
able or dangerous for the robot to do so. On the other hand,
predicting that an object is not metallic and putting it in
the microwave could have dire consequences. As expected,
the LKB performs poorly at predicting highly varied object
properties. This makes intuitive sense as knowing that one
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Figure 10: Accuracy of all class labels for location, color,
material, and type.

cup is blue does not guarantee the next is blue. For material,
the LKB performs well at predicting material as it captures
that most bottles in the environment are plastic.

However, it is when we look at the color, that we gain
interesting insight about object properties. We see that the
AKB follows a slightly different trend than we observed in
the object location experiment. We expected that with highly
varying properties that the AKB could provide more insight
than the LKB. However, if we look deeper at the results of
the AKB, we discover that for the class bottle, the AKB has
no prediction for color. We believe this points to an impor-
tant distinction between the variability of an object property
and the variability of an object location. When an object’s
property can take on almost any value (e.g., bottles can be
pretty much any color), general knowledge offers little to no
insight as to what property the object might have. Further-
more, this situation is also difficult for LKB to learn as the
best we can hope for is chance. This suggests that for cer-
tain object properties, the only approach to predicting object
properties that are highly variable is to remember the exact
properties of the instance or perform directly reasoning us-
ing lower level features of the object. For both location and
properties, we variability effects various accuracy levels of
the AKB and LKB. To fully understand the extent in which
this insight can be extended to a larger number of classes and
properties, we perform a simulated experiment that looks at
the variance accuracies across all described classes.

Simulated Evaluation
We exhaustively evaluate how different sources of informa-
tion impact the various queries listed in Abstract Knowledge
Base using a similar procedure and experimental setup for
each query to Building the Knowledge Bases. Specifically,
we populated a simulated world of object instances, and ran-
domly assigned attribute values (seen in Fig. 3) and locations
(seen in Fig. 6). Properties and locations were made class
specific to better capture the real-world (e.g., no couch in-
stances could be located in a drawer and televisions cannot
be made of paper). While the rules set in simulation may
not capture the rules of a specific real-world environment,

they do capture the relationship between class variability and
LKB accuracy and can be viewed as a unique layout of a
specific home.

Evaluation Metric and Results
To test each query type, we start with a set of simulated in-
stances. This set is taken as the true state of the world. Then
a set of world state observations are created by randomly
selecting locations and properties for each instance in the
world and repeating the process for the number of world
state observations. This set of world state observations were
used as actual data for the LKB to process and store. To
validate our hypothesis in Experiments, the evaluation was
done similarly to that of the robot experiment where we re-
port the top three locations and top one property. For the
last query, object types (IsA), was tested by comparing the
results of the returned values to three sets of human gener-
ated labels base on common sense for the home environment
(e.g., IsA(Apple, Fruit) is true whereas IsA(Bowl, Stadium)
is false).

In Experiments, we see a limited view of object locations
and classes. By doing the simulated evaluation, we can look
at if the trends seen in the robot experiment were reflected
in the 31 different class types. The results of this evaluation
are in Fig. 10. The table shows the accuracy of the AKB
and LKB for location, color, and material by class. They are
further broken down into accuracy values after seeing one
observation vs seeing all 15 observations. The table also in-
cludes the different IsA relations for each object class.

We can see that several of the trends observed in the robot
experiment hold true. For example, ovens, which are less
variable in location, have a higher initial AKB accuracy than
the LKB. The LKB learns the oven location perfectly after
15 observations. In general, color, which varies highly does
poorly for both ABK and LKB unless the object has a notion
of a color (e.g., carrot and broccoli). We see that the AKB
does well on the material property if the class has a typical
material it is made out of (e.g., books, sink, spoon). We test
this on an aggregate scale in the next section. For the IsA
queries, the average accuracy of the relations was 72%. Be-
tween the three sets of human labels, there was an 83.17%
average pairwise percent agreement.The accuracy values be-
tween all three users were within 2% of each other. We can
look at Fig. 10 to see that this accuracy can be reflected in
the labels produced. It correctly identifies useful types such
as apple is a food and bottle is a container. The few cases
where IsA does not perform well can be seen with bowl be-
ing related to stadium and glass to drug.

Role of Variability
The results show that taking into account variability of local
knowledge history will be essential for reasoning about new
situations. The general trend is that as variability increases,
a discount factor should be used to emphasize sources of
general knowledge that are resistant to such effects. Fig. 11
was generated by categorizing each simulation output seen
in Fig. 10 as either low (1-3 alternatives), medium (4-6 alter-
natives), or high (7+ alternatives) variability and averaging
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Figure 11: Relationship between LKB accuracy and vari-
ability.

all the results for each category. It shows that as variabil-
ity increases, the LKB accuracy drops. For extreme levels
of variability similar to in Object Properties, even a general
knowledge systems fails. In these situations, a robot should
rely on direct observations or chance.

Conclusions
In this work we introduce the SiRoK framework and sys-
tematically evaluate it through robot experiments and simu-
lation. We use SiRoK to better understand the trade offs be-
tween general knowledge bases that store symbols and con-
cepts and local knowledge bases that store perceptual data.
We find that variability is a key heuristic to take into ac-
count when evaluating knowledge. In future works, we hope
to find methods of fusing the disparate knowledge sources,
improving the quality of the BLN in our AKB, and utilizing
the IsA query.

References
Buschka, P., and Saffiotti, A. 2004. Some notes on the use
of hybrid maps for mobile robots. In Proc. of the 8th Int.
Conf. on Intelligent Autonomous Systems, 547–556.
Chen, J., and Liu, J. 2011. Combining ConceptNet and
WordNet for Word Sense Disambiguation. In International
Joint Conference on Natural Language Processing, 686–
694.
Chu, V.; Fitzgerald, T.; and Thomaz, A. L. 2016. Learning
object affordances by leveraging the combination of human-
guidance and self-exploration. In 2016 11th ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI),
221–228.
Fung, R., and Chang, K.-C. 2013. Weighing and Integrating
Evidence for Stochastic Simulation in Bayesian Networks.
Gabrilovich, E., and Markovitch, S. 2007. Computing Se-
mantic Relatedness using Wikipedia-based Explicit Seman-
tic Analysis. In Veloso, M. M., ed., International Joint Con-
ference on Artificial Intelligence, 1606–1611.
Garrison, H., and Chernova, S. 2016. Situated structure
learning of a bayesian logic network for commonsense rea-
soning. CoRR abs/1607.00428.
Hermans, T.; Rehg, J.; and Bobick, A. 2011. Affordance pre-
diction via learned object attributes. In International Con-
ference on Robotics and Automation: Workshop on Semantic
Perception, Mapping, and Exploration.

Jain, D.; Kirchlechner, B.; and Beetz, M. 2007. Extending
markov logic to model probability distributions in relational
domains. In KI 2007: Advances in Artificial Intelligence.
Springer. 129–143.
Jain, D.; Waldherr, S.; and Beetz, M. 2009. Bayesian
Logic Networks. Technical report, Technische Universität
München, München.
Lenat, D. B. 1995. Cyc: A large-scale investment in
knowledge infrastructure. Communications of the ACM
38(11):33–38.
Lin, T.; Maire, M.; Belongie, S. J.; Bourdev, L. D.; Girshick,
R. B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; and Zit-
nick, C. L. 2014. Microsoft COCO: common objects in
context. CoRR abs/1405.0312.
Matuszek, C.; Cabral, J.; Witbrock, M. J.; and DeOliveira, J.
2006. An introduction to the syntax and content of cyc. In
AAAI Spring Symposium: Formalizing and Compiling Back-
ground Knowledge and Its Applications to Knowledge Rep-
resentation and Question Answering, 44–49. Citeseer.
Miller, G. A. 1995. Wordnet: A lexical database for english.
Commun. ACM 38(11):39–41.
Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016.
You only look once: Unified, real-time object detection. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 779–788.
Richardson, M., and Domingos, P. 2006a. Markov logic
networks. Machine Learning 62(1-2):107–136.
Richardson, M., and Domingos, P. 2006b. Markov logic
networks. Machine learning 62(1-2):107–136.
Rother, C.; Kolmogorov, V.; and Blake, A. 2004. ”grabcut”:
Interactive foreground extraction using iterated graph cuts.
ACM Trans. Graph. 23(3):309–314.
Saxena, A.; Jain, A.; Sener, O.; Jami, A.; Misra, D. K.; and
Koppula, H. S. 2014. Robobrain: Large-scale knowledge
engine for robots. arXiv preprint arXiv:1412.0691.
Sinapov, J.; Schenck, C.; Staley, K.; Sukhoy, V.; and
Stoytchev, A. 2014. Grounding semantic categories
in behavioral interactions: Experiments with 100 objects.
Robotics and Autonomous Systems 62(5):632 – 645. Spe-
cial Issue Semantic Perception, Mapping and Exploration.
Speer, R., and Havasi, C. 2012. Representing General Re-
lational Knowledge in ConceptNet 5. In Proceedings of the
Eight International Conference on Language Resources and
Evaluation.
Stoica, E., and Hearst, M. A. 2004. Nearly-Automated
Metadata Hierarchy Creation. In North American Chapter of
the Association for Computational Linguistics: Human Lan-
guage Technologies, 117–120.
Sun, Y.; Bo, L.; and Fox, D. 2013. Attribute based object
identification. In 2013 IEEE International Conference on
Robotics and Automation, 2096–2103.
Tenorth, M., and Beetz, M. 2009. Knowrobknowledge
processing for autonomous personal robots. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ Interna-
tional Conference on, 4261–4266. IEEE.

523



Tsatsaronis, G.; Varlamis, I.; and Vazirgiannis, M. 2008.
Word Sense Disambiguation with Semantic Networks. In
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Abstract
An important problem of automated planning is validating if
a plan complies with the planning domain model. Such vali-
dation is straightforward for classical sequential planning but
until recently there was no such validation approach for Hi-
erarchical Task Networks (HTN) planning. In this paper we
propose a novel technique for validating HTN plans that is
based on representing the HTN model as an attribute gram-
mar and using a special parsing algorithm to verify if the plan
can be generated by the grammar.

Introduction
Automated planning deals with the problem of finding a se-
quences of actions to reach a certain goal (Ghallab, Nau, and
Traverso 2004). Actions are specified via preconditions and
postconditions (also called effects) describing propositions
that must be true in the state before action application (pre-
conditions) and that will become true after action application
(postconditions). Hence, action are a formal model of state
transitions and a plan – a sequence of actions - describes a
valid evolution of the world from a given initial state.

To increase efficiency of planning, Hierarchical Task Net-
works (HTN) were proposed to describe sets of actions as
recipes for solving specific tasks (Erol, Hendler, and Nau
1996). HTN models are based on idea of decomposing com-
pound tasks to subtasks until primitive tasks – actions – are
obtained. The decomposition may include extra constraints
describing precedence relations between sub-tasks and re-
quired properties of states (propositions that must hold be-
fore or between certain subtasks). The planning problem is
specified as a goal task that needs to be decomposed to a se-
quence of actions applicable to an initial state, while satisfy-
ing all the task decomposition constraints and all the causal
constraints between the actions. This sequence needs to be a
valid plan in terms of causal constraints between the actions.

An important problem in automated planning is validat-
ing plans with respect to a given domain model. Such vali-
dation is easy for classical sequential planning, where it can
be realised by simulating plan execution (Howey and Long
2003). However, until recently, there was no method to vali-
date HTN plans, that is, to validate if a given plan can indeed
be obtained from the goal task by some decomposition steps.
There exists a recent validation method based on represent-
ing all possible decompositions as a SAT problem (Behnke,

Höller, and Biundo 2017), but this method does not assume
decomposition constraints (except decomposition precondi-
tions that are compiled away to a dummy action). In this
paper we suggest a more general approach that covers HTN
models completely including all decomposition and causal
constraints.

It has already been noted that derivation trees of Context-
Free (CF) grammars resemble the structure of Hierarchical
Task Networks (HTN). This has been used in (Erol, Hendler,
and Nau 1996) to show the expressiveness of planning for-
malisms. Then, there have been some attempts to represent
HTNs as CF grammars or equivalent formalisms (Nederhof,
Shieber, and Satta 2003) but as demonstrated in (Höller et
al. 2014), the languages defined by HTN planning problems
(with partial-order, preconditions and effects) lie somewhere
between CF and context-sensitive (CS) languages. In (Geib
2016), the author presents an approach with a similar in-
tention with the help of Combinatory Categorial Grammars
(CCGs), which are part of a category lying between CF and
CS grammars, the mildly context-sensitive grammars. The
author proposes a single model for both plan recognition and
planning and he also proposes a planning algorithm based
on CCGs. However, it appears that this modelling process is
counter-intuitive as it requires a lexicalization (the hierarchi-
cal structure is contained in the terminal symbols) while the
decomposition approach is more natural in planning. Also,
it is not yet sure if this formalism and its planning tech-
nique can produce the full range of HTN plans. Recently,
a model of HTNs based on attribute grammars has been
proposed (Barták and Maillard 2017). The underlying gram-
mar describes proper task decompositions, while a so called
timeline constraint over the task attributes describes valid
orders of actions based on causal relations. It is the only
model that handles all HTN constraints including interleav-
ing of actions. Though string shuffling used in plan recogni-
tion (Maraist 2017) allows some for of task interleaving, it
is not clear how it maintains the causal constraints.

In this paper, we will use attribute grammars to validate
HTN plans. We will describe how HTN domain model is
represented as an attribute grammar, and for this grammar
we will present a parsing technique that does plan validation.
Note that due to interleaving of actions and presence of extra
constraints, the parsing technique needs to be more general
than classical parsing for CF grammars.
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Background on Planning
In this paper we work with classical STRIPS planning that
deals with sequences of actions transferring the world from a
given initial state to a state satisfying certain goal condition.
World states are modelled as sets of propositions that are true
in those states and actions are changing validity of certain
propositions.

Classical Planning
Formally, let P be a set of all propositions modelling prop-
erties of world states. Then a state S ⊆ P is a set of propo-
sitions that are true in that state (every other proposition
is false). Later, we will use the notation S+ = S to de-
scribe explicitly the valid propositions in the state S and
S− = P \ S to describe explicitly the propositions that are
not valid in the state S.

Each action a is described by four sets of propositions
(B+

a , B−a , A+
a , A

−
a ), where B+

a , B−a , A+
a , A

−
a ⊆ P,B+

a ∩
B−a = ∅, A+

a ∩ A−a = ∅. Sets B+
a and B−a describe positive

and negative preconditions of action a, that is, propositions
that must be true and false right before the action a. Action
a is applicable to state S iff B+

a ⊆ S ∧ B−a ∩ S = ∅. Sets
A+

a and A−a describe positive and negative effects of action
a, that is, propositions that will become true and false in
the state right after executing the action a. If an action a is
applicable to state S then the state right after the action a
will be

γ(S, a) = (S \A−a ) ∪A+
a . (1)

If an action a is not applicable to state S then γ(S, a) is
undefined.

The classical planning problem, also called a STRIPS
problem, consists of a set of actions A, a set of propositions
S0 called an initial state, and disjoint sets of goal proposi-
tions G+ and G− describing the propositions required to be
true and false in the goal state. A solution to the planning
problem is a sequence of actions a1, a2, . . . , an such that
S = γ(...γ(γ(S0, a1), a2), ..., an) and G+ ⊆ S∧G−∩S =
∅. This sequence of actions is called a plan.

Hierarchical Task Networks as Attribute
Grammars
To simplify the planning process, several extensions of the
basic STRIPS model were proposed to include some control
knowledge. Hierarchical Task Networks (Erol, Hendler, and
Nau 1996) were proposed as a planning domain modeling
framework that includes control knowledge in the form of
recipes how to solve specific tasks. The recipe is represented
as a task network, which is a set of sub-tasks to solve a given
task together with the set of constraints between the sub-
tasks. The constraints can be of the following types:
• t1 ≺ t2: a precedence constraint meaning that in every

plan the last action obtained from task t1 is before the
first action obtained from task t2,

• before(U, l): a precondition constraint meaning that in ev-
ery plan the literal l holds in the state right before the first
action obtained from tasks U ,

• after(U, l): a postcondition constraint meaning that in ev-
ery plan the literal l will hold in the state right after the
last action obtained from tasks U ,

• between(U, V, l): a prevailing condition meaning that in
every plan the literal l holds in all the states between the
last action obtained from tasks U and the first action ob-
tained from tasks V .

In HTN, a compound task is solved by decomposing it to a
task network - the connection between the task and the task
network is called a (decomposition) method. The method
can naturally be described as a rewriting rule of an attribute
grammar. Attribute grammars (Knuth 1968) use the same
type of rewriting rules as context-free grammars, but the
grammar symbols may by annotated by attributes connected
by constraints. This makes attribute grammars stronger than
CF grammars in the sense of recognising a large class of
languages.

Let T (
−→
X ) be a compound task with parameters

−→
X and

({T1(
−→
X1), ..., Tk(

−→
Xk)}, C) be a task network, where C are

its constraints. We can encode the decomposition method as
an attribute grammar rule:

T (
−→
X )→ T1 (

−→
X1 ), ..., Tk(

−→
Xk) [C] (2)

The planning problem in HTN is specified by an initial
state (the set of propositions that hold at the beginning) and
by an initial task representing the goal. The compound tasks
need to be decomposed via decomposition methods until
a set of primitive tasks – actions – is obtained. Moreover,
these actions need to be linearly ordered to satisfy all the
constraints obtained during decompositions and the obtained
plan – a linear sequence of actions – must be applicable to
the initial state in the same sense as in classical planning.

If we do planning by application of grammar rewriting
rules, we get a linear sequence of actions (a terminal word
in terms of formal grammars), but this sequence does not
necessarily form a valid plan as the actions from different
tasks may interleave to satisfy the ordering and causal con-
straints (see Figure 1). So the actions obtained by applying
the grammar rules need to be re-ordered to get a valid plan.
The attribute grammars model the valid action orderings via
a global timeline constraint (Barták and Maillard 2017).

To give a particular example of the decomposition rule, let
us assume a task to transfer a container c from one location
l1 to another location l2 by a robot r. To solve this task, we
need to load the container first, then move it to its destination
location, and unload it there. The following rule describes
this decomposition method1:

Transfer1(c, l1, l2, r)→Load-rob(c, r, l1).

Move-rob(r, l1, l2).

Unload-rob(c, r, l2)[C] (3)

1There are several ways to model the task. For example, the
before and after constraints can be omitted as they will be part of
the primitive tasks.
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Figure 1: A task decomposition tree showing interleaving of actions obtained from decompositions of different tasks - denoted
by the bold arc.

where
C = {Load-rob≺Move-rob, Move-rob≺Unload-rob,

before({Load-rob}, at(r, l1)),

before({Load-rob}, at(c, l1)),

between({Load-rob}, {Move-rob}, at(r, l1)),

between({Move-rob}, {Unload-rob}, at(r, l2)),

between({Load-rob}, {Unload-rob}, in(c, r)),

after({Unload-rob}, at(c, l2)}
The decomposition constraints specify the following restric-
tions:
• the robot and the container must be at the same location
l1 before loading,

• the robot does not change its location between loading
and the start of moving,

• the container stays in the robot between loading and un-
loading,

• the robot stays at the destination location l2 between the
end of moving and the start of unloading,

• the container will be at the destination location l2 after
unloading.

An alternative decomposition method omits the Move-rob
task as it assumes that this task is introduced by decompo-
sition of another compound task. See the task for c2 in Fig-
ure 1. Still, we need to ensure that the robot is at the right
location before unloading, which is done by the constraint
before({Unload-rob}, at(r, l2)). The alternative decompo-
sition rule looks as follows:

Transfer1(c, l1, l2, r)→Load-rob(c, r, l1).

Unload-rob(c, r, l2)

[C] (4)

where
C = {Load-rob≺Unload-rob,

before({Load-rob}, at(r, l1)),

before({Load-rob}, at(c, l1)),

before({Unload-rob}, at(r, l2)),

between({Load-rob}, {Unload-rob}, in(c, r)),

after({Unload-rob}, at(c, l2)}

The top task for transferring two containers using the
same robot and between the same locations can be described
using the following decomposition method:

Transfer2(c1, c2, l1, l2, r)→Transfer1(c1, l1, l2, r).

Transfer1(c2, l1, l2, r)

[] (5)

Notice that having the before and after constraints al-
lows us to describe action preconditions and postconditions
as decomposition constraints rather than having them speci-
fied separately. This is done by having a compound task for
each action, for example Load-rob corresponds to the prim-
itive action load-r. This is the corresponding decomposition
method:

Load-rob(c, r, l)→ load-r(c, r, l). [C] (6)

where

C = {before({load-r}, at(r, l)),

before({load-r}, at(c, l)),

after({load-r}, in(c, r)}

after({load-r},¬at(c, l)}

HTN Validation Algorithm
The plan validation problem is a problem reverse to the plan-
ning problem. We have a plan as the input and the problem
is to validate if that plan can be obtained by decomposition
from the goal task. In terms of grammars, it means using the
grammar rules in an analytical way to do parsing.

Recall that the order of actions in the plan does not neces-
sarily correspond to the order of actions obtained by appli-
cation of grammar rules. Hence, during parsing, we ignore
the order of tasks on the right side of grammar rules and
we model the action (task) order explicitly by using indexes
assigned to tasks. Each task will be annotated by two in-
dexes describing the order numbers of the first and the last
actions obtained from task decomposition. For example, the
task Load-rob1,1(c1, r1, l1) from Figure 1, that gives the
action load-r(c1, r1, l1), is annotated by indexes 1,1.

Let us now demonstrate a single parsing step. Assume
that we already parsed the tasks Load-rob1,1(c1, r1, l1),
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Move-rob3,3(r1, l1, l2), and Unload-rob4,4(c1, r1, l2) and
we continue in parsing using the grammar rule (3). The tasks
on the right side of the rule already exist and we can verify
the ordering constraints 1 ≺ 3 and 3 ≺ 4 by comparing the
respective indexes. The result of the parsing step will be a
new parsed task Transfer11,4(c1, l1, l2, r1), where the in-
dexes are taken as minimal and maximal indexes of its sub-
tasks.

We still need to verify the other constraints in the
rule. This will be done by maintaining a timeline for
each task. The timeline is a sequence of slots describ-
ing validity of literals in time steps corresponding to
the task. For every time step, the slot will describe the
literals that hold in the state before the action at that
time (a Pre part) and literals that must hold in the
state right after the action (a Post part). For example,
the task Load-rob1,1(c1, r1, l1) will use a single slot
({at(r1, l1), at(c1, l1)}, {in(c1, r1),¬at(c1, l1)})1, where
the index represents time and the literals are basically pre-
conditions and postconditions of action load-r(c1, r1, l1)
that were encoded as before and after constraints (see the
rule (6)).

During the parsing step, we first merge the timelines for
the subtasks with possible insertion of empty slots for times
not covered by the sub-tasks (slot 2 in our example). Empty
slot does not contain any action, but its Pre part may contain
literals obtained by propagation (see below). Two slots with
the same index can only be merged if (at least) one of them is
empty. This way we ensure that each action is generated ex-
actly once. For example, when merging timelines for tasks
Transfer11,4(c1, l1, l2, r1) and Transfer12,5(c2, l1, l2, r1)
we are merging non-empty slots 1,3,4 for the first task with
non-empty slots 2, 5 of the second task. If the slots cannot
be merged as they both already contain an action, then pro-
cessing of the derivation rule is stopped and the algorithm
continues with the next rule.

After merging the timelines for subtasks we add literals
based on the rule constraints - for before and between con-
straints, the literals are added to the Pre parts of respective
slots; for the after constraints, the literals are added to the
Post parts.

After that, we propagate the literals between the slots.
This propagation goes from left to right, where the liter-
als from the postcondition part are added to the precondi-
tion part of the next slot and, if the slot is not empty (con-
tains some action), the literals in preconditions, that are not
deleted by the action, are added to the precondition part of
the next slot. This basically follows the state transition for-
mula as specified in (1). The right-to-left propagation adds
literals in preconditions to preconditions of the previous slot
provided that the slot is not empty and the literal is not added
by the action in it. The goal of propagation is to keep in-
formation about states up-to-date (notice that propagation
changes only the Pre parts of the slots that describe the
states).

Finally, we verify that the slots are consistent, which con-
sists of checking that no slot contains a literal and its nega-
tion in any of its parts. Table 1 demonstrates this process –
it shows how literals are added to the slots in each step (slot

merging, constraint addition, propagation).
The validation algorithm first transfers each action to a

primitive task with the index corresponding to the order of
the action and with the timeline containing a single slot with
that action and empty Pre and Post parts. Recall, that pre-
conditions and postconditions of actions will be added later
during parsing using the rules of type (6). The literals of the
initial state are added to the Pre part of the first slot (for sim-
plicity, we ignored them in the previous example of a parsing
step). Then the algorithm takes any grammar rule such that
the tasks from its right side are already known and it does
the above described parsing step. This may introduce a new
parsed task. This process is repeated while some new task is
introduced or until a goal task is introduced whose indexes
span the whole plan. If the goal task is found then the plan
is sound, otherwise, the plan is not sound. Note that the al-
gorithm always finishes as there is only a finite number of
compound tasks that can introduced during parsing. We will
now describe the validation algorithm formally.

Data structures
First we will describe the data structures that are used later in
the algorithm. Basically, we will introduce slots, timelines,
and the parsed tasks :

We define the type slot as a tuple
(Pre+,Pre−, a,Post+,Post−) where
• Pre+ is a set of atoms (positive propositions in the state)
• Pre− is a set of atoms (negative propositions in the state)
• a ∈ A ∪ {empty} is an action name (or an empty slot)
• Post+ is a set of atoms (positive postconditions of a)
• Post− is a set of atoms (negative postconditions of a)

To simplify verification of slot/timeline soundness we use
separate sets for positive and negative propositions. Note
also that the sets Pre+,Pre− are not only related to action a
but they will describe the state right before the action. More
precisely, these sets describe the propostions that must hold
in the state, but until all slots are non-empty, the state may
be described only partially (see Table 1).

Then, we define the type subplan that represents a parsed
task T as a tuple (T, b, e, timeline) with
• T being a task name,
• b and e (b ≤ e) being two integers equal to the indexes in

the original plan of the first and last actions in the subplan
generated from T ; this pair shows how much the subplan
generated from T spans over the verified plan,

• timeline being an ordered sequence of (e − b + 1)
elements of the slot type; we have timeline =
{sb, ..., se} ⊆ slots.

The algorithm formally
The validation algorithm is shown in Algorithm 1. At the
beginning, actions in the plan are put individually in the set
subplans (line 2). They are all subplans of size 1. The ini-
tial state is added to the Pre parts of the slot of the first action.
Then, at each iteration the algorithm fires rules in the gram-
mar where all subtasks are elements of subplans. When
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Table 1: The process of building a timeline during parsing the compound task Transfer11,4(c1, l1, l2, r1).
1: load-r(c1, r1, l1) 2: empty 3: move-r(r1, l1, l2) 4: unload-r(c1, r1, l2)
Pre1 Post1 Pre2 Post2 Pre3 Post3 Pre4 Post4

merge at(r1, l1) in(c1, r1) at(r1, l1) ¬at(r1, l1) in(c1, r1) ¬in(c1, r1)
at(c1, l1) ¬at(c1, l1) at(r1, l2) at(r1, l2) at(c1, l2)

constrain at(r1, l1)
in(c1, r1) in(c1, r1)

propagate ¬at(c1, l1) ¬at(r1, l1)

such a rule is found, the precedence constraints are checked
(line 7). Then the timelines of subtasks are merged (line 8)
and before, after, and between constraints from the grammar
rule are applied to this merged timeline (lines 9, 10, and 11).
Preconditions and postconditions are then propagated from
left to right and from right to left (line 12). Finally, the result-
ing timeline is verified (13). If no inconsistency is detected,
then the new parsed task is added to the set subplans so it
can be further used for building a higher-level task. Incon-
sistency means that some atom is both in the positive and in
the negative parts of the state.

The positive exit condition (cf. Algorithm 2) is met when
there is a Goal task in subplans that contains all the ele-
ments of the verified plan P.

If, it is not possible to find a rule that applies to the current
elements of subplans and produces a new subplan, then it
means that the plan P is not valid with regard to the gram-
mar. In other words, the set subplans has not grown during
the execution of the for-loop (lines 6 to 18). At this point, the
algorithm returns false (line 20).

We also include all the sub-procedures for merging the
timelines and for applying the constraints. To simplify no-
tations in the procedures for constraint application (Algo-
rithms 5-7), we use the following notation – if l is a positive
literal p then l+ = {p} and l− = {}; if l is a negative literal
¬p then l+ = {} and l− = {p}.

Soundness
We shall now show that the algorithm correctly recognises
plans that can be derived from a given Goal task and an
initial state.

First, one should realise that the algorithm always fin-
ishes. All sub-procedures clearly finish as they consist of for
loops and if-then-else conditions only. During each iteration
of the main while loop, some new task may be added to the
set of subplans. The input plan is finite and we have only a
finite number of constants so the number of tasks that can be
derived is obviously finite. Hence the while loop must fin-
ish sometime, either when no new task is added (line 20) or
when the Goal task is derived (line 5).

Assume that the algorithm finished successfully (with the
answer true). It means that it found the Goal task that spans
over the full plan (test in Algorithm 2). By reconstructing
how this task was added to the set subplans, we get the
derivation tree (such as the one in Figure 1). We indeed get
a tree as during merging of timelines, two slots can only be
merged if at least one of them is empty. Hence each task

in the tree has exactly one parent. If the same task appears
two (or more) times in the tree then its slots would eventu-
ally merge with themselves, which is not possible (see Algo-
rithm 4). All the constraints used in this derivation (decom-
position) are satisfied as the algorithm verified the prece-
dence constraints and added the literals from the before, af-
ter, and between constraints to the timeline, which is consis-
tent.

Notice that the Post parts of the slots in the timeline con-
tain only the propositions from the after constraints so they
model the effects of actions. The Pre parts (in particular
the Pre+ sets) model the states between the actions and we
shall show that the sequence of states is correct with respect
to the plan. First, each state is sound as it does not contain an
atom and its negation (Pre+ ∩Pre− = ∅). Next, two subse-
quent states Pre+i and Pre+i+1 model a correct state transi-
tion thanks to the propagation:

Pre+i+1 = (Pre+i \Post−i ) ∪ Post+i

Pre−i+1 = (Pre−i \Post+i ) ∪ Post−i

This realises the state transition formula (1). We will show
it for the positive part of the state (the proof is identical for
the negative part). Assume slots i and i+1 with some action
filled in the slot i (the action must appear there eventually
as the final timeline has all slots non-empty). Thanks to left-
to-right propagation, it must hold Post+i ⊆ Pre+i+1 (line 5
of Algorithm 8) and Pre+i \Post−i ⊆ Pre+i+1 (line 8 of Al-
gorithm 8). Thanks to right-to-left propagation, it must hold
Pre+i+1 \Post

+
i ⊆ Pre+i (line 14 of Algorithm 8). It means

that if a proposition p ∈ Pre+i+1 is not added by the action
(p /∈ Post+i ) then p must already be part of the previous state
(p ∈ Pre+i ). Together, we get:

Pre+i+1 = (Pre+i \Post−i ) ∪ Post+i (7)

Notice that the algorithm works even when no initial state
is provided. Then the final sets Pre+1 and Pre−1 specify the
propositions that must and must not be valid at the beginning
to have a valid plan. If the initial state is provided then it is
propagated through the slots.

In summary, the set of actions in the plan is generated by
the grammar and forms a valid plan.

If the algorithm finishes with the answer false then no
derivation exists as no other task can be parsed. Being the
plan correct, the derivation tree would be reconstructed by
the algorithm as the algorithm finds all the tasks that decom-
pose to any subset of the plan.
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Data: a plan P = (a1 , ..., an), initial state InitState, a goal
task Goal, an attribute grammar
G = (Σ, N,P , S, A,C)

Result: a boolean equal to true if the plan can be derived
from the hierarchical structure, false otherwise

1 Function VERIFYPLAN
/* Initialization of the set of

subplans */
2 subplans ← {(ai, i, i, {(∅, ∅, ai, ∅, ∅)i})|ai ∈ P} ;
3 Pre+1 ← InitState+;
4 Pre−1 ← InitState−;
5 while ¬PLANISVALID(subplans,P, Goal) do
6 for each rule R in P of the form

T0 → T1 , ..., Tk [≺, pre, post, btw] such that
subtasks = {(Ti, bi, ei, tli)|i ∈ 1..k} ⊆
subplans do

7 verify ≺from rule R else break;
8 timeline ← MERGEPLANS(subtasks);
9 APPLYPRE(timeline, pre);

10 APPLYPOST(timeline, post);
11 APPLYBETWEEN(timeline, btw);
12 PROPAGATE(timeline);
13 if ∃(Pre+,Pre−, a,Post+,Post−) ∈

timeline,Pre+ ∩Pre− ̸=
∅ ∨ Post+ ∩Post− ̸= ∅ then

14 break
15 end
16 b = min(Ti,bi,ei,tli)∈subtasks bi,;
17 e = max(Ti,bi,ei,tli)∈subtasks ei;
18 subplans ←

subplans∪{(T0 , b, e, timeline)};
19 end
20 if size of subplans has not increased since the

last iteration then
21 return false
22 end
23 end
24 return true
25 end

Algorithm 1: Verification procedure

We showed that the algorithm always finishes. If it returns
true then the plan can be derived from the Goal task. If it
returns false then the plan cannot be derived from the Goal
task. Hence the algorithm validates the plans with respect to
the domain model.

Initial Experiments
In this section we report some initial experiments compar-
ing the performance of the implementation of our algorithm
against the PANDA verifier, described in (Behnke, Höller,
and Biundo 2017). The PANDA verifier validates a plan by
translating it into a SAT formula. This translation requires a
bound, the maximum height of the decomposition that any
candidate for a solution plan can have.

In these experiments we use the Transport domain, ini-
tially introduced in the International Planning Competition
(IPC) of 2008, but without action costs. In this domain, each
vehicle can transport packages between different locations
based on road connections. Our implementation is able to

Data: the set of subplans: subplans, the plan to be
validated P, the goal task Goal

Result: true or false
1 Function PLANISVALID
2 return (∃(Goal, 1, |P |, timeline) ∈

subplans, s.t.
⋃

(_,_,ai,_,_)∈timeline{ai} = P)

3 end
Algorithm 2: The end condition of the valid plan

Data: a set of subplans : subplans
Result: a set of slots newtimeline, the aggregation of the

slots of every subplan
1 Function MERGEPLANS(subplans)
2 lb = min(Ti,bi,ei,timelinei)∈subplans bi;
3 ub = max(Ti,bi,ei,timelinei)∈subplans ei;
4 newtimeline ← {(∅, ∅, empty, ∅, ∅)i|i ∈ lb..ub};
5 for (T, b, e, timeline) ∈ subplans do
6 for sk ∈ timeline, s

′
k ∈ newtimeline do

7 s
′
k ← MERGESLOTS(sk, s

′
k)

8 end
9 end

10 return newtimeline
11 end

Algorithm 3: Merge timelines

parse directly from SHOP2 planner’s (Nau et al. 2003) in-
put files, arguably one of the most used HTN planner. At the
moment, we only support basic HTN syntax from SHOP2,
but we are gradually adding support for many SHOP2 com-
mands and tags. PANDA verifier uses its own input, which
is a PDDL-like representation of HTN.

Our Transport domain description in SHOP2 syntax con-
tains three primitive tasks and three non-primitive tasks.
The description used in PANDA verifier has four primitive
tasks and six non-primitive tasks. The extra primitive task
is a noop action, which in our description is encoded di-
rectly as a non-primitive task. The extra non-primitive tasks
from PANDA’s description are dummy methods that repre-
sent primitive tasks.

We ran 5 different problem instances and collected the
total CPU times. These times include any parsing done by
both approaches, and was calculated from the start to the
end of each validation. To run these experiments we used
a virtual machine (Oracle VM VirtualBox Version 5.1.22)
running an Ubuntu 16.04 LTS, with 4 GB of memory and an
Intel Core i7-4700MQ processor with 4 cores and 8 threads.
Our implementation requires Ruby (we used version 2.3.1),
while the PANDA verifier requires Java (we used OpenJDK
1.8) and the MiniSat solver (we used version 2.2.1).

Table 2 shows the initial results comparing our attribute
grammar approach with PANDA verifier using the transport
domain (with no action cost). The first problem instance (p1)
has a solution plan with 8 actions, and an initial state with
15 ground atoms. Each subsequent problem instance has the
following number of actions and number of ground atoms:
12 and 29; 16 and 45; 19 and 60; 22 and 80. Odd problems
(p1, p3, and p5) had valid solutions, while even problems
(p2, and p4) had not.
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Data: two slots
s1 = (Pre+1 ,Pre

−
1 , a1 ,Post

+
1 ,Post

−
1 ), s2 =

(Pre+2 ,Pre
−
2 , a2 ,Post

+
2 ,Post

−
2 )

Result: merged slots
1 Function MERGESLOTS(s1 , s2 )
2 if a1 = empty or a2 = empty then
3 Pre+ = Pre+1 ∪Pre+2 ;
4 Pre− = Pre−1 ∪Pre−2 ;
5 Post+ = Post+1 ∪Post−2 ;
6 Post− = Post−1 ∪Post−2 ;
7 a = a1 (if a2 = empty) or a2 (if a1 = empty);
8 return (Pre+,Pre−, a,Post+,Post−)
9 end

10 break
11 end

Algorithm 4: Merge slots

Data: a set of slot : slots, a set of before constraints
Result: an updated set of slots

1 Function APPLYPRE(slots, pre)
2 for before(U, l) ∈ pre do
3 id = min{bi|Ti ∈ U};
4 Pre+id ← Pre+id∪ l+;
5 Pre−id ← Pre−id∪ l−

6 end
7 end

Algorithm 5: Apply before constraints

For these initial experiments, our approach appear to scale
linearly when the solution is valid, but takes a bit more time
if it is not valid, as shown in Figure 2. PANDA verifier had
an exception on p2, because it does not seem to allow invalid
transitions, but instead of ignoring that decomposition path,
it crashes with an exception. And in p5, Panda returned that
the plan was not valid, which was incorrect.
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Figure 2: Transport domain results.

Conclusions
In this paper we proposed an algorithm for validating HTN
plans by using parsing of an attribute grammar describ-
ing the HTN domain model. The algorithm mimics classi-
cal parsing of context-free grammars customised to attribute

Data: a set of slot : slots, a set of after constraints
Result: an updated set of slots

1 Function APPLYPOST(slots, post)
2 for after(U, l) ∈ post do
3 id = max{ei|Ti ∈ U};
4 Post+id ← Post+id∪ l+;
5 Post−id ← Post−id∪ l−

6 end
7 end

Algorithm 6: Apply after constraints

Data: a set of slot : slots, a set of between constraints
Result: an updated set of slots

1 Function APPLYBETWEEN(slots, between)
2 for between(U, V, l) ∈ between do
3 s = max{ei|Ti ∈ U}+ 1;
4 e = min{bi|Ti ∈ V };
5 for id = s to e do
6 Pre+id ← Pre+id∪ l+;
7 Pre−id ← Pre−id∪ l−

8 end
9 end

10 end
Algorithm 7: Apply between constraints

grammars with the timeline constraint.
The algorithm starts with the plan and applies the decom-

position rules in a reverse order to group actions into tasks.
The decomposition constraints are verified by keeping infor-
mation about propositions that must be true at states before
and after actions. The algorithm stops when it finds a task
that covers the complete plan. Then the plan is valid. The
other way of stopping the algorithm is when no other com-
pound task can be constructed. In such a case the plan does
not correspond to any task. Note, that the plan might still be
a correct sequence of actions but it cannot be obtained by
decomposition of any task.

The major innovation of the proposed technique is that it
is the first approach that covers HTN models fully includ-
ing interleaving of actions and various decomposition con-
straints. In particular, the proposed algorithm is more gen-
eral than an existing SAT-based approach (Behnke, Höller,
and Biundo 2017) in covering precedence, before, between,
and after constraints. The SAT-based approach only covers
specific before constraints (the constraint is applied to the
set of all tasks on the right side of the rule) that must be
encoded as dummy actions. These dummy actions must be
part of the plan to be validated so for the original plan to be
validated one must find proper places, where to insert these
dummy actions, which is not discussed in (Behnke, Höller,
and Biundo 2017).

Furthermore, our initial experiments indicate that convert-
ing HTN models to attribute grammars may provide better
performance results for validating plans, rather than con-
verting to SAT. More experiments with other domains are
needed to ascertain in which types of domain each approach
performs better.

As other planning models such as procedural domain con-
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Data: a set of slots slots
Result: an updated set of slots

1 Function PROPAGATE(slots)
2 lb = min(Pre+j ,Pre−j ,aj ,Post+j ,Post−j )∈slots j;

3 ub = max(Pre+j ,Pre−j ,aj ,Post+j ,Post−j )∈slots j − 1;

/* Propagation to the right */
4 for i = lb to ub do
5 Pre+i+1 ← Pre+i+1 ∪Post+i ;
6 Pre−i+1 ← Pre−i+1 ∪Post−i ;
7 if ai ̸= empty then
8 Pre+i+1 ← Pre+i+1 ∪(Pre

+
i \Post−i );

9 Pre−i+1 ← Pre−i+1 ∪(Pre
−
i \Post+i )

10 end
11 end

/* Propagation to the left */
12 for i = ub downto lb do
13 if ai ̸= empty then
14 Pre+i ← Pre+i ∪(Pre+i+1 \Post

+
i );

15 Pre−i ← Pre−i ∪(Pre−i+1 \Post
−
i )

16 end
17 end
18 end

Algorithm 8: Propagate

Table 2: Initial results of experiments comparing CPU run
time, in seconds.

transport
domain

p01 p02 p03 p04 p05
CPU
time

CPU
time

CPU
time

CPU
time

CPU
time

Attribute
grammar 0.068 0.084 0.072 0.108 0.084

PANDA
verifier 5.968 - 58.52 13.32 65.56

wrong

trol knowledge (Baier, Fritz, and McIlraith 2007) can be
translated to attribute grammars (Barták and Maillard 2017)
the proposed algorithm can verify plans with respect to these
models too.

Our current implementation of the algorithm uses a
straightforward approach to find rules used for parsing. The
more efficient implementation of the algorithm may exploit
principles of the Rete algorithm (Forgy 1982) used for pro-
duction rule systems.

Acknowledgments
Research is supported by the Czech Science Foundation un-
der the project P103-15-19877S.

References
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploiting
Procedural Domain Control Knowledge in State-of-the-Art
Planners. In Boddy, M. S.; Fox, M.; and Thiébaux, S., eds.,
Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling, ICAPS 2007, Provi-

dence, Rhode Island, USA, September 22-26, 2007, 26–33.
AAAI.
Barták, R., and Maillard, A. 2017. Attribute grammars with
set attributes and global constraints as a unifying framework
for planning domain models. In Proc. of the ICAPS Work-
shop on Knowledge Engineering for Planning and Schedul-
ing, KEPS 1017, 45–53.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This is a
solution! (... but is it though?) verifying solutions of hierar-
chical planning problems. In Proceedings of the Twenty-
Seventh International Conference on Automated Planning
and Scheduling, ICAPS 2017), 20–28.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity Results for HTN Planning. Ann. Math. Artif. Intell.
18(1):69–93.
Forgy, C. L. 1982. Rete: A fast algorithm for the many
pattern/many object pattern match problem. Artificial Intel-
ligence 19(1):17 – 37.
Geib, C. 2016. Lexicalized reasoning about actions. Ad-
vances in Cognitive Systems 4:187–206.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Howey, R., and Long, D. 2003. VAL’s Progress: The Auto-
matic Validation Tool for PDDL2.1 used in the International
Planning Competition. In Proceedings of ICAPS’03 Work-
shop on the Competition: Impact, Organization, Evaluation,
Benchmarks.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In Schaub, T.; Friedrich, G.; and O’Sullivan, B., eds., ECAI
2014 - 21st European Conference on Artificial Intelligence,
18-22 August 2014, Prague, Czech Republic - Including
Prestigious Applications of Intelligent Systems (PAIS 2014),
volume 263 of Frontiers in Artificial Intelligence and Appli-
cations, 447–452. IOS Press.
Knuth, D. E. 1968. Semantics of Context-Free Languages.
Mathematical Systems Theory 2(2):127–145.
Maraist, J. 2017. String shuffling over a gap between parsing
and plan recognition. In The AAAI-17 Workshop on Plan,
Activity, and Intent Recognition WS-17-13, 835–842.
Nau, D.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; and
Yaman, F. 2003. Shop2: An htn planning system. Journal
of Artificial Intelligence Research 20:379–404.
Nederhof, M.-J.; Shieber, S.; and Satta, G. 2003. Partially
ordered multiset context-free grammars and ID/LP parsing.
Proceedings of the Eighth International Workshop on Pars-
ing Technologies 171–182.

489



Perspectives on the Validation and Verification of Machine Learning Systems
in the Context of Highly Automated Vehicles

Werner Damm
C. v. Ossietzky University

26111 Oldenburg, Germany

Martin Fränzle
C. v. Ossietzky University

26111 Oldenburg, Germany

Sebastian Gerwinn
OFFIS e. V.

Escherweg 2, 26121 Oldenburg

Paul Kröger
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Abstract
Algorithms incorporating learned functionality play an in-
creasingly important role for highly automated vehicles.
Their impressive performance within environmental percep-
tion and other tasks central to automated driving comes at
the price of a hitherto unsolved functional verification prob-
lem within safety analysis. We propose to combine statisti-
cal guarantee statements about the generalisation ability of
learning algorithms with the functional architecture as well as
constraints about the dynamics and ontology of the physical
world, yielding an integrated formulation of the safety verifi-
cation problem of functional architectures comprising artifi-
cial intelligence components. Its formulation as a probabilis-
tic constraint system enables calculation of low risk manoeu-
vres. We illustrate the proposed scheme on a simple automo-
tive scenario featuring unreliable environmental perception.

Modern AI and especially machine learning (ML) com-
ponents are believed to be a key enabler for bringing highly
automated driving functions at SAE levels 4 to 5 (SAE and
others 2014) onto the market. Before such systems can be
released, obtaining a rigorous guarantee of their safety is
essential: systematic faults within the design (including the
training phase of ML based algorithms) could have dramatic
effects on the overall safety of the mass-marketed system
implementations and hence also for their societal accep-
tance. A key challenge for this verification is the inherent
uncertainty involved in object identification. To illustrate the
impact of such uncertainties, consider the following artifical
example of a misperception (see Fig. 1).

At time t0 , the EGO vehicle (E) has detected another ve-
hicle v1 on the left lane using information from a camera
and RADAR sensors. At a later time instant t1 , the vehicle
v1 has closed the gap to EGO and consequently is detected
still. Additionally, another vehicle v2 has been detected at
very short distance in front of EGO, while another detec-
tor has recognized the presence of a bridge in front. In this
situation, EGO is confronted with the decision to either per-
form an overtaking manoeuvre – thereby risking a collision
with v1 , or to perform an emergency brake to mitigate a po-
tential collision with vehicle v2 . A third option would be to
perform an evasive manoeuvre to the right, thereby risking
a collision with a bridge pillar. Note that at t0 , the space in

Copyright c⃝ 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

v1

E
t = t0

v1

v2E
t = t1

v2

Bridge

Figure 1: Example scenario. Perception of the environment
is considered at two distinct time instants t0 and t1 .

front of the EGO vehicle has been perceived as free. In this
scenario, we assume that the time gap t1 − t0 is insufficient
for a vehicle v2 to be outside warning range at t0 and to get
to the position (and speed) perceived for v2 at t1 , given the
physical constraints on vehicle dynamics. Thus, the results
of the different detectors evidently are contradictory.

To choose an acceptable manoeuvre, a careful assessment
of the risks on a vehicle level is necessary – for example by
quantifying possible outcomes of a decision using injury risk
scales, like AIS or ISS (MacKenzie, Shapiro, and Eastham
1985). Individual ML components, however, are tradition-
ally evaluated using component level loss functions (Cesa-
Bianchi, Conconi, and Gentile 2004). Using the common 0-
1 loss (l1-0), the resulting risk at the component level can be
interpreted as bound on the probability of correctly classi-
fying a random input (distributed according to a fixed but
unknown distribution):

1− E[l1-0] = P (correctly classified) ∈ [p(δ), p(δ)] (1)

where the right hand side denotes the confidence interval as
obtained from the available bounds, i.e. via cross-validation
or generalisation bounds such as within the Probably-
Almost-Correct (PAC) framework. These bounds in turn de-
pend on the confidence level δ. Under the assumption that
any new data (different from the training data) would be gen-
erated according to the same probability distribution which
also generated the training data, a generalisation statement
can be formulated and proven which provides the desired
bound on the true risk.

In order to use such information to assess the risk on
vehicle level, we propose a layered approach integrating
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the individual ML components into a constraint system
which includes prior knowledge about physical properties
and the functional architecture. The resulting architecture
thereby combines features from probabilistic graphical mod-
els (Koller and Friedman 2009) capturing probabilistic re-
lationships with features from non-deterministic constraint
systems. We consequently employ the same definition of
risk as used in reliability and utility theory (expected loss),
yet permit underspecification of the probability distribution
determining the expected values of interest. Among the pos-
sible instants of the underspecified distribution, we aim at
calculating worst-case expectations. This permits to com-
pute robust low-risk manoeuvres at runtime, whereby indi-
vidual performance assessment in terms of the empirical risk
at component level can be combined with the obtained con-
straint system to bound the overall risk at vehicle level.

In the following, we will illustrate the proposed approach
on the above example, thereby illustrating its potential.

The Probabilistic Constraint System
In the example of Fig. 1, we are interested in the following
analysis questions: Can we compute a robust low-risk ma-
noeuvre for EGO at t1 , which keeps risk adequately bounded
despite potentially uncertain information? Given such a ro-
bust manoeuvre, can we quantify the worst-case residual risk
associated with such controller?

To answer such questions, we first construct a constraint
system reflecting assumed knowledge as well as imperfect
information about the underlying situation. To this end, we
try to build a probabilistic system similar to a dynamic
Bayesian network (Murphy and Russell 2002). In practice,
we sometimes have to admit unknown dependencies not ex-
pressible in standard Bayesian networks. For such depen-
dencies, we possess no explicit probability distribution, but
can only model constraints. We illustrate such a constraint
system in Fig. 2, where the functional architecture is re-
flected on the left side whereas information about the real
world is depicted on the right side. In the following, we re-
fer to each signal or measurement (nodes within the figure)
as variables, which can be interpreted as (possibly Dirac dis-
tributed) random variables.

We assume that EGO’s sensor system provides a glare de-
tector, a bridge detector, and a vehicle detector tracking mul-
tiple vehicles. The result of each detector is an observed vari-
able within a Bayesian network (left side of Fig. 2). As the
environment and hence also the observation thereof evolves
over time, each variable is also annotated with a time in-
dex t0 , t1 (represented as shaded duplicates of the nodes).
We assume the functional architecture to be given. Hence,
the Bayesian Network on the left side can be constructed
with known dependencies (illustrated as thin arrows). These
can contain safety mechanisms like the “Fused Vehicle De-
tection”, which employs detection of glare to improve raw
object detection by situationally reducing the importance of
camera-based detection. As these are only percepts of ob-
jects, corresponding real-world counterparts are modeled on
the right side. Within the dynamic Bayesian network, these
counterparts act as latent variables of which dependencies
and probability distributions are unknown to us. Labeled test

data, however, provide values for these variables on an in-
dividual data-point basis. Physical dynamical constraints, if
available, furthermore restrict their possible evolution over
time. Both types of information yield an overall constraint
system confining possible instantiations of the unknown dis-
tributions and thus permitting to assess worst-case (across
possible instantiations) residual risk of the resulting system.

Probabilistic constraints
Using access to ground truth data from manual labeling,
probabilistic constraints can be derived in terms of compo-
nent based performance (Eq. 1) using standard test-scores.
Within our example, the performance of vehicle detection
could specify a constraint on the conditional probability

P (v̂i | Glare ∧ vi ∧ Bridge) ∈ p̂ ± ϵ(δ) , (2)
where p̂ denotes the empirical performance, ϵ(δ) denotes the
accuracy of such an estimate depending on the confidence
level δ, and vi denotes vehicle vi’s actual presence whereas
v̂i represents that vi was detected. Analogously, fluctuations
of sensor readings can be described as probability distribu-
tions conditioned on environmental states. Although some
(in-)dependence connections might be known, the explicit
probability distribution might be unknown. Therefore, in-
stead of fully specifying a dynamic belief network over all
discrete and continuous variables, we only collect an incom-
plete set of constraints of the form of Eq. (2). This necessi-
tates an optimisation over the possible instantiations of such
underspecified distributions when calculating a safe bound
on the residual risk.

Dynamic constraints
In addition to such probabilistic constraints originating from
individual component tests, prior knowledge about the dy-
namics can be incorporated (blue box ’dynamic constraints’
in Fig. 2). The detected positions of vehicles v1 and v2 can
for example be constrained via kinematic constraints of the
vehicles. Such constraints can be represented as follows,
where ℓi(t) denotes the position of vehicle i at time t and
v, a are intervals containing minimal and maximal values
for velocity and acceleration:

ℓi(t+∆t) ∈
(
ℓi(t) + (∆tv +

1

2
a(∆t)2 )

)
(3)

Additional ontological constraints can reflect prior knowl-
edge about the allowed relationship of detected objects.

As we have thus formalised a system involving variables
on vehicle level φ as well as corresponding variables in the
real world ψ, we can now relate systemic, real-world loss
(e.g., in terms of available injury risk scales) to vehicle-level
variables. As the vehicle variables include decision and ac-
tuator variables, such a loss function l(φ,ψ) evaluates the
real-world severity of detecting, deciding, and acting. Note
that both types of variables are collections of variables and in
particular include references to different temporal instances.

Risk assessment
As mentioned earlier, we are interested in the overall risk of
the designed function R as well as a situational risk Rs from
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Figure 2: Structure of the probabilistic constraint system generated from the functional architecture and the constraints obtained
via empirical evaluation as well as ontological and dynamic constraints. See text for more details.

which we can derive a robust low-risk manoeuvre in a given
situation. Mathematically, these quantities can be described
as the following expectations:

R = E(φ,ψ)[l(φ,ψ)], R
s = E(ψ|φ)[l

s(φ,ψ)] (4)
Note that for the situational risk, we use the conditional dis-
tribution conditioned on observations obtained in the par-
ticular situation and a potentially different loss-function ls

(compared to the overall risk). More specifically, within the
overall risk for the designed function, we might, e.g., want
to use a binary loss function assigning l(φ,ψ) = 1 if the
situation was handled successfully and l(φ,ψ) = 0 else. For
the situational risk, we might want to use a quantitative as-
sessment of the outcome. In contrast to the common setting
of dynamic Bayesian Networks, the joint distribution pφ,ψ ,
however, is not completely given. Instead, only constraints
over such a distribution are known due to equations like (2).
More precisely, constraints as in (2) can be written as pro-
jections of the joint distribution using Bayes Rule:

P (v̂i | Glare ∧ vi ∧ Bridge) (5)

=
P (v̂i ∧ Glare ∧ vi ∧ Bridge)
P (Glare ∧ vi ∧ Bridge)

,

where each of the constraint variables either is a variable
of the vehicle domain or of the real world (see Fig. 2). As
the expression above omits some of the variables defined
in those domains, the corresponding expressions have to be
obtained by marginalising pφ,ψ . The question whether the
(overall or situational) residual risk meets a desired bound ϑ
can be formulated as a noisy optimisation problem

max
pφ,ψ∈P

E(φ,ψ)[l(φ,ψ)]
?
≤ ϑ, max

pφ,ψ∈P
E(ψ|φ)[l

s(φ,ψ)]
?
≤ ϑ ,

(6)
where the different constraints restrict the possible distribu-
tions, in the above formulation denoted by the set P . If all

variables are discrete, constraints on the distribution can di-
rectly be encoded into constraints on the distribution-values
for different valuations of the vehicle or real-world vari-
ables. For continuous variables, the distribution has to be
parametrised accordingly. Both types of constraints, how-
ever, can be incorporated into possibly non-linear functions
gi acting on the parametrised version of the distribution and
the variables φ,ψ. For the empirical constraint of Eq. (2,5),
such functions can be formalised as follows:

Ci(P,φ,ψ) def.: gi(P,φ,ψ) ≤ ci (7)
∫
p(φ,ψ)d((φ ∪ ψ) \ {v̂i, vi, Glare, Bridge})∫
p(φ,ψ)d((φ ∪ ψ) \ {vi, Glare, Bridge})

︸ ︷︷ ︸
:=g0(P,φ,ψ)

≤ p̂+ ϵ(δ)︸ ︷︷ ︸
:=c0

Using specification techniques of stochastic satisfiability
modulo theory (Fränzle, Hermanns, and Teige 2008), the
problem (6) can alternatively be formulated as:

∃P :
∧

i Ci(P,φ,ψ)

R

φ,ψ∼P : l(φ,ψ)
?
≤ ϑ (8)

Here, we collected all constraints over the distribution as
well as over the variables within the conjunction

∧
i Ci.

Exploiting importance sampling for Eq. 8 (Fränzle et al.
2015), such problem can be made amenable for analysis us-
ing available tools (Fränzle, Gao, and Gerwinn 2017). To
address scalability issues, one can also resort to statistical
model checking (Ellen, Gerwinn, and Fränzle 2014).

Verification and situational analysis
Calculating the maximal risk as formalised in the previous
section provides quantitative evidence to an overall safety
verification process on vehicle level. Depending on the num-
ber of constraints with confidence statements, one can cal-
culate an overall confidence level on the risk as well. Each

514



confidence-based constraint holds with a certain confidence.
If these can be regarded as independent, the overall confi-
dence level is merely the product of the individual confi-
dence levels. In case one is not willing to assume indepen-
dence between the confidence-based constraints, the over-
all confidence level can be incorporated in a way similar to
probabilistic constraints like (2). Note that such constraints
also include constraints like c-approximate-independence as
used in (Shalev-Shwartz, Shammah, and Shashua 2017),
however we allow for even more pessimistic bounds when-
ever less information about the dependence is available.

The calculation of the maximal risk can also be performed
in a particular situation. Instead of marginalising variables
for the expected loss in (4), we can fix the valuation of ve-
hicular variables to the observed values. The maximal risk
then enables one to identify the most critical real-world sit-
uations and to choose a minimal risk manoeuvre. For our
example, this facilitates inferring whether it is indeed more
likely to falsely detect v2 at time t1 than having it not de-
tected at time t0 . As due to the dynamic constraint, either
v2 has been missed at time t0 and correctly classified at t1
or the other way around, this restricts the joint distribution
to assign zero probability to the other possibilities. Together
with the empirical evidence constraints (e.g., marginal prob-
abilities observing glare or the probability of bridges occur-
ring), we can therefore calculate which of the two remaining
possibilities are more likely. As such, it can be interpreted
as the worst case interpretation of a Bayesian filter for dy-
namical systems which can be applied at each point in time.
However, as worst-case configurations have to be identified,
scalability of such an approach remains to be demonstrated
in practice, but is outside of the scope of this short-paper.

Discussion
We presented a framework designed for computing (a) the
current risk under given observations and (b) the overall risk
under the given constraints and marginal probabilities aris-
ing from empirical evaluations of different machine learning
components involved within the functional architecture.

Within our setting, such quantities are different from in-
ference tasks typically considered within Dynamic Bayesian
Networks. The central issue is that probability distributions
need not completely be known, but can be underspecified,
as illustrated by the occurrence of glare or bridges provide
constraints on the marginal. In fact, earlier approaches in
combining constraints with Bayesian Belief Networks were
frequently restricted to representing constraints as pseudo-
observations (Crowley, Boerlage, and Poole 2007) or to in-
terpreting the standard inference scheme as constraint prop-
agation (Pearl 1985). But both can also be combined to ren-
der the inference machinery more suited for such kind of
constrained network (Gogate and Dechter 2012).

Automatically learning the structure of Bayesian Net-
works has also been explored (Berg, Järvisalo, and Malone
2014). In such an approach, constraints about the parameters
(or structure) of the underlying graph can be considered. As
it fits the network parameters such that the network best ex-
plains a given dataset, that approach does not immediately
fit into our robust safety verification setting.

In our work, unknown or underspecified relations between
variables of the network are understood as spanning and
constraining a set of possible distributions. From a frequen-
tist point of view compatible with quantitative safety, we
would like to compute worst and best case scenarios under
all possible assignments across the viable probability dis-
tributions rather than missing information about the depen-
dency of different variables. This paper explains the prag-
matics and the underlying mathematical constructions; the
development of scalable tools automating such reasoning as
well as their benchmarking remain issues of future work.
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Abstract

The field of sequential decision making (SDM) captures a
range of mathematical frameworks geared towards the syn-
thesis of goal-directed behaviors for autonomous systems.
Abstract benchmark problems such as the blocks-world do-
main have facilitated immense progress in solution algorithms
for SDM. there is some evidence that a direct application of
SDM algorithms in real-world situations can produce unsafe
behaviors. This is particularly apparent in task and motion
planning in robotics. We believe that the reliability of today’s
SDM algorithms is limited because SDM models, such as the
blocks-world domain, are unsound abstractions (those that
yield false inferences) of real world situations.
This position paper presents the case for a focused research ef-
fort towards the study of sound abstractions of models for
SDM and algorithms for efficiently computing safe goal-
directed behavior using such abstractions.

Introduction
The increasing maturity of AI techniques presents us with
a unique opportunity to develop physical and electronic AI
agents that could autonomously assist humans. Such agents
would need to be able to accept high-level commands, and
reason about what to do over extended periods of time span-
ning multiple decision epochs. The field of sequential de-
cision making (SDM) captures such problems. In order to
solve them, an AI agent needs to the assess different courses
of action available to it: which course of actions would ac-
complish the assigned task? would it be safe to execute?
which course of actions would be beneficial? Evaluating a
possible courses of action in this way requires some knowl-
edge about the environment and the possible impacts of the
agent’s actions in it—in other words, a model.

In the absence of a model, such evaluations would need to
be done through trial and error. It is difficult to conceive of
situations where deploying robots would have a high value
and where such trials and their associated errors would be
acceptable. In situations that involve proximal human-robot
collaboration, or situations that are too dangerous for humans,
errors are usually associated with forbidding penalties. Just
as a bomb-disposal robot that learns on the fly would be an
ephemeral investment, a household assistant that attempts
to learn through trial an error, which medication is required
when a person goes into insulin shock, would be of dubious

ethical, social and economic value. It is well known in the
AI community that PAC-learning guarantees alone are not
sufficient for ensuring safe behavior in such situations; recent
analyses have highlighted their limitations in the face of the
anticipated roles of AI systems (Russell, Dewey, and Tegmark
2015; Brynjolfsson and Mitchell 2017).

The focus of this position paper is on the mechanisms
for creating domain models that are efficient but sound ab-
stractions of real-world problems, and the algorithmic ad-
vances required for using such models for safe behavior
synthesis. Models can be in the form of closed-form math-
ematical specifications, (such as Markov Decision Process
with transition probability specifications) or in the form of
black-box simulators or generative models that can sample
possible action outcomes (as typically used in reinforcement
learning). Models of either form can be derived from ex-
isting knowledge, or learned through past experience in the
field. Indeed, some of the most popular demonstrations of
AI systems rely upon perfect models (Silver et al. 2017;
Mnih et al. 2015) in the form of game simulators for effi-
ciently obtaining millions of labeled behavioral experiences.

Regardless of the form or the nature of acquisition of
models, higher fidelity models feature larger branching fac-
tors and larger time horizons and therefore result in SDM
problems of higher computational complexity (regardless
of the solution approach taken, be it dynamic program-
ming, search, learning from trials and past experience,
or a combination thereof). Hierarchical abstractions are
used to alleviate this problem by creating input models
that are abstractions of the true problem (Sacerdoti 1974;
Knoblock 1990; Parr and Russell 1998; Dietterich 2000;
Marthi, Russell, and Wolfe 2007).

Hierarchical abstractions include state abstractions (mod-
els that maintain fewer environment properties than the real
situation) as well as temporal abstractions (models featuring
high-level actions that span multiple primitive operations of
the underlying actuators).

In recent work (Srivastava, Russell, and Pinto 2016) we
showed that simple forms of abstractions can result in models
that are not consistent with the underlying problem scenario
as well as models that are not Markovian, or not solvable!
As a result many real-world problems have never truly been
addressed by SDM solution techniques that treat their input
models as perfect abstractions.
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Figure 1: A realistic blocks-world problem. Pickups can be
made only from the sides. Although there is no stacking and
the preconditions of the pickup action are satisfied, there is
no feasible motion plan for picking up most of the objects on
the table.

For instance, consider the blocks-world domain, which
is among the most easily recognizable, perhaps even infa-
mous, benchmarks for sequential decision making. Given
initial and desired configurations of blocks on a surface, the
problem is to compute a behavior that would transform the
initial configuration to the desired configuration. The set
of available actions typically consists of maneuvers such
as pickup and place. Stochastic action effects and noisy
sensors for this domain can be easily expressed in most mod-
eling languages for SDM (Boutilier, Reiter, and Price 2001;
Younes and Littman 2004; Sanner 2010; Srivastava, Cheng,
and Russell 2014). Although SDM models for the blocks-
world domain are considered to be too “well studied” to be in-
teresting for research, they are poor abstractions of the under-
lying SDM problems of rearranging objects while avoiding
collisions (see Fig. 1 for a simplified yet realistic problem).
Consequently the underlying problems remain unsolved and
feature significant research challenges.

Indeed, while the true space of blocks-world problems
captures all pick-and-place problems, ongoing research in
robotics shows that SDM solvers that perform well on the
standard blocks-world model produce poor unsafe solu-
tions even in simplified real-world situations that feature
robots with perfect sensing and actuation, and block arrange-
ments without stacking (Cambon, Alami, and Gravot 2009;
Kaelbling and Lozano-Pérez 2011; Plaku and Hager 2010;
Kaelbling and Lozano-Pérez 2013; Srivastava et al. 2014).
These solutions could violate arbitrarily many of the con-
straints that were abstracted in an unsound fashion, and result
in unsafe behaviors that include unintended collisions. This
situation is representative of several problems where goal-
directed autonomy is desired; we believe that this potential
for unsafe behavior effectively prohibits the safe deployment
of general purpose AI agents.

Problem with the Current Situation
Conventional modeling paradigm As noted above, it is
well appreciated that abstraction is a useful mathematical
tool for solving real-world SDM problems. The conventional

wisdom along these lines is to use an abstract domain model
with an SDM solver to compute the “high-level strategy” for
solving a problem (e.g., one that determines the order of un-
stacking and stacking block-tower configurations), and then
use a low-level planner (e.g., a motion planner) or controller
to implement each of the actions in the strategy.

Underlying assumptions and their limitations This wis-
dom is based on the assumption that the effect of applying an
action in the real world will be consistent with the modeled
effect in the abstract model. This in turn is based on the
assumption that the result of applying a desired abstraction
function on the real situation will be a Markovian model.

On the other hand, constructing a Markovian model re-
quires the inclusion of several properties of the environment
as state variables or predicates; abstraction requires removing,
or coarsening properties in the model. It should therefore
be natural to expect the abstraction of an accurate domain
model to possibly result in a non-Markovian domain model.
Recent work shows that this intuition is in fact true (Srivas-
tava, Russell, and Pinto 2016): simple abstractions can result
in models that are not Markovian; furthermore, it is often not
possible to express the resulting models accurately in existing
modeling languages for SDM.

This raises a few questions: all the SDM models we use
are Markovian (and naturally, are expressed in the modeling
languages that we have been using). Few, if any, of these are
accurate, non-abstracted depictions of the real world situation
that they represent. Have we been lucky enough to always get
Markovian abstractions? Do the domain designers intuitively
construct perfect abstract transition systems that retain just
the right properties to make the resulting abstracted model
tractable as well as Markovian?

To answer these questions, we turn once again to the blocks
world and its abstraction expressed as the blocks-world do-
main. Among other details, this domain states that if a block
has nothing on top of it, the robot’s gripper should be able
to pick it up. In a real situation (e.g. Fig. 1), this is not true
because there may be no collision-free path for the gripper
to pick up the block. The vocabulary used in the blocks-
world domain is not sufficient to accurately express this prop-
erty (Cambon, Alami, and Gravot 2009; Hertle et al. 2012;
Kaelbling and Lozano-Pérez 2011). As a result the standard
blocks-world domain is not a sound model of the real blocks
world because it implies action consequences that are not
true 1. Policies computed using such models are unsafe, and
can be dangerous. Although our example refers to situations
where geometric constraints were abstracted out, such errors
can arise with all forms of abstraction. One would not ap-
preciate a robot using such principles in most applications
that could benefit from a safe and productive robot, including
mining, firefighting, bomb disposals, household help, etc.

1It is sound for environments where the gripper is either infinites-
imally thin (so that it can slip between adjacent towers), or is an
electromagnet suspended from the ceiling. Either way, the ceiling
should be arbitrarily high and the table should be broad enough to
lay any number of blocks on it. Such situations are unusual if not
impossible.
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In fact, the sound abstraction of the blocks world using the
vocabulary of the blocks-world domain is a non-Markovian
transition system: the effect of reaching for a block in this
transition system depends on the occurrence of preceding
place actions. If the target block was initially reachable, and
no other place actions placed a block on the same table, the
block will remain accessible. Otherwise, it may not be. There-
fore, the standard blocks-world model is not only inconsistent
with the underlying problem, its vocabulary is insufficient
to make the abstract transition system Markovian! Forcing
such a non-Markovian abstract transition system into domain
languages that can only express Markovian models results
in a model that is inconsistent with the modeled problem.
Our research indicates that the situation can be resolved if
the modeling languages are extended to annotate parts of the
model as imprecise due to abstraction, and algorithms uti-
lize this information to extract more information from higher
fidelity models when needed.

Non-solutions The preceding discussion may seem to indi-
cate that a stochastic formulation (such as an MDP) would
help resolve these issues. However, this is not true. First, it
would require enumerating and solving for the complete set
of possible outcomes for an action in an abstract state space.
This is infeasible. E.g., in the blocks-world model’s vocabu-
lary, every time a robot (not a ceiling mounted gripper) tries
to move its hand, all possible subsets of movable objects in
the room would need to be considered as potentially being
knocked over. Second, such models would not be complete:
they would disallow solutions that are feasible under a more
accurate representation.

The problems highlighted above are orthogonal to ef-
forts aimed at increasing the level of detail expressible in
our input modeling languages (e.g., (Hertle et al. 2012;
Fox and Long 2002)). Even if we could model SDM prob-
lems at the level of detail of sub-atomic particle interactions,
this is unlikely to yield more efficient solution techniques.
It is equally unlikely that modeling an entire household at
the level circuit diagrams of every appliance would “help” a
household robot efficiently compute useful behavior. Natural
computational consequences of increasing branching factors
and time horizons make it clear that a uniformly detailed
model at the highest possible fidelity will not yield the most
efficient SDM system, regardless of the solution approach.
Thus, SDM solvers will continue to rely upon hierarchical
abstractions for efficiency in modeling and in solution com-
putation.

Paths Ahead
We believe that the limitations in correctly expressing abstract
SDM models of real-world situations (and consequently, of
efficiently solving such problems) have limited the applica-
bility of SDM techniques in the real world. As a community
we have made numerous advances under the assumption that
inputs will be perfect abstractions that yield exactly the true
consequences. Our position is that these advances are nec-
essary, but not sufficient towards deployable autonomous
systems. We also need to expand the scope of SDM technol-

ogy towards principled approaches for designing and com-
puting abstract SDM models that may be imprecise, but not
incorrect. New representations for such abstract SDM mod-
els (generative models or simulators, as well as analytical)
would require and facilitate corresponding algorithms that
produce truly executable solutions.

Some prior research efforts are highly relevant to this prob-
lem. Work on algorithms for planning with models that
may be incomplete addresses situations when unknown per-
turbations may have been applied to accurate domain mod-
els that are expressible in the modeling language (Nguyen
and Kambhampati 2014). Angelic semantics for high-level
actions increase the scope of representation languages to
specify upper and lower bounds on reachable states in situa-
tions with temporal abstraction rather than state abstraction.
The resulting algorithms are able to effectively utilize such
bounds in pruning irrelevant high-level actions (Marthi, Rus-
sell, and Wolfe 2007). Related research in motion planning
highlights the value of state abstractions of control-theoretic
models, which are constructed using subsets of the full set
of variables required to describe a system (Styler and Sim-
mons 2017). We have been developing representations for
efficiently expressing imprecise but sound abstract models
resulting from state and temporal abstraction for arbitrary
SDM problems. Our solution algorithms utilize sound and
imprecise abstract models, but dynamically improve them
by deriving abstracted, context-sensitive information from
more accurate models. This information is abstracted and
incorporated in the abstract models (Srivastava et al. 2014;
Srivastava, Russell, and Pinto 2016), allowing SDM algo-
rithms to compute agent behaviors with strong guarantees
of safety and correctness. Some of our main results can be
summarized as follows:

1. Under certain conditions, abstraction can indeed result in
Markovian models. These conditions appear to be rare.

2. In many cases, abstraction results in domain models that in-
cludes forms of model-imprecision that could have been re-
solved during computation had they been expressed. How-
ever, current modeling languages do not support constructs
that distinguish model imprecision arising due to abstrac-
tion from non-determinism or stochasticity that is a feature
of the environment.

3. If model imprecision caused due to abstraction is recorded
in the abstract model (e.g., by noting that the effect of
a place action is imprecise, along with the abstraction
function that caused the imprecision), the situation can be
resolved. It is possible to dynamically tune the abstraction
to include more information from accurate models using
different solvers for models at different levels of abstrac-
tion. Used in this fashion, SDM solvers can effectively
produce executable behavior. Dynamically tuning an im-
precise (but not incorrect) model during search allowed us
to produce a competitive task and motion planner that uses
existing SDM solvers.

These initial results indicate that new methods for computing
and utilizing abstract models that are sound even when they
are imprecise allow us to leverage SDM technology towards
solving entire new classes of problems that are abstractions
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of real-world situations.
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Abstract

We present a new approach to learning for planning, where
knowledge acquired while solving a given set of planning
problems is used to plan faster in related, but new problem
instances. We show that a deep neural network can be used to
learn and represent a generalized reactive policy (GRP) that
maps a problem instance and a state to an action, and that the
learned GRPs efficiently solve large classes of challenging
problem instances. In contrast to prior efforts in this direction,
our approach significantly reduces the dependence of learning
on handcrafted domain knowledge or feature selection. In-
stead, the GRP is trained from scratch using a set of successful
execution traces. We show that our approach can also be used
to automatically learn a heuristic function that can be used in
directed search algorithms. We evaluate our approach using
an extensive suite of experiments on two challenging planning
problem domains and show that our approach facilitates learn-
ing complex decision making policies and powerful heuristic
functions with minimal human input. Video results available
at goo.gl/Hpy4e3.

Introduction
In order to help with day to day chores such as organizing
a cabinet or arranging a dinner table, robots need to be able
plan: to reason about the best course of action that could lead
to a given objective. Unfortunately, planning is well known
to be a challenging computational problem: plan-existence
for deterministic, fully observable environments is PSPACE-
complete when expressed using rudimentary propositional
representations (Bylander 1994). Such results have inspired
multiple approaches for reusing knowledge acquired while
planning across multiple problem instances (in the form of
triangle tables (Fikes, Hart, and Nilsson 1972), learning con-
trol knowledge for planning (Yoon, Fern, and Givan 2008),
and constructing generalized plans that solve multiple prob-
lem instances (Srivastava, Immerman, and Zilberstein 2011;
Hu and De Giacomo 2011) with the goal of faster plan com-
putation on a new problem instance.

In this work, we present an approach that unifies the prin-
ciples of imitation learning (IL) and generalized planning for

∗Part of the work was done while this author was at United
Technologies Research Center

learning a generalized reactive policy (GRP) that predicts the
action to be taken, given an observation of the planning prob-
lem instance and the current state. The GRP is represented
as a deep neural network (DNN). We use an off-the-shelf
planner to plan on a set of training problems, and train the
DNN to learn a GRP that imitates and generalizes the behav-
ior generated by the planner. We then evaluate the learned
GRP on a set of unseen test problems from the same domain.
We show that the learned GRP successfully generalizes to
unseen problem instances including those with larger state
spaces than were available in the training set. This allows
our approach to be used in end-to-end systems that learn
representations as well as executable behavior purely from
observations of successful executions in similar problems.

We also show that our approach can generate
representation-independent heuristic functions for a
given domain, to be used in arbitrary directed search
algorithms such as A∗ (Hart, Nilsson, and Raphael 1968).
Our approach can be used in this fashion when stronger
guarantees of completeness and classical notions of “ex-
plainability” are desired. Furthermore, in a process that we
call “leapfrogging", such heuristic functions can be used in
tandem with directed search algorithms to generate training
data for much larger problem instances, which in turn can be
used for training more general GRPs. This process can be
repeated, leading to GRPs that solve larger and more difficult
problem instances with iteration.

While recent work on DNNs has illustrated their utility as
function representations in situations where the input data
can be expressed in an image-based representation, we show
that DNNs can also be effective for learning and represent-
ing GRPs in a broader class of problems where the input is
expressed using a graph data structure. For the purpose of
this paper, we restrict our attention to deterministic, fully
observable planning problems. We evaluate our approach on
two planning domains that feature different forms of input
representations. The first domain is Sokoban (see Figure 1).
This domain represents problems where the execution of a
plan can be accurately expressed as a sequence of images.
This category captures a number of problems of interest in
household robotics including setting the dinner table. This
problem has been described as the most challenging problem
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in the literature on learning for planning (Fern, Khardon, and
Tadepalli 2011).

Our second test domain is the traveling salesperson prob-
lem (TSP), which represents a category of problems where
execution is not efficiently describable through a sequence
of images. This problem is challenging for classical plan-
ners as valid solutions need to satisfy a plan-wide property
(namely a Hamiltonian cycle, which does not revisit any
nodes). Our experiments with the TSP show that using graph
convolutions (Dai et al. 2017) DNNs can be used effectively
as function representations for GRPs in problems where the
grounded planning domain is expressed as a graph data struc-
ture.

Our experiments reveal that several architectural compo-
nents are required to learn GRPs in the form of DNNs: (1) A
deep network. (2) Structuring the network to receive as input
pairs of current state and goal observations. This allows us
to ‘bootstrap’ the data, by training with all pairs of states
in a demonstration trajectory. (3) Predicting plan length as
an auxiliary training signal can improve IL performance. In
addition, the plan length can be effectively exploited as a
heuristic by standard planners.

We believe that these observations are general, and will
hold for many domains. For the particular case of Sokoban,
using these insights, we were able to demonstrate a 97%
success rate in one object domains, and an 87% success rate
in two object domains. In Figure 1 we show an example test
domain, and a non-trivial solution produced by our learned
DNN.

Related Work
The interface of planning and learning (Fern, Khardon, and
Tadepalli 2011) has been investigated extensively in the past.
The works of Khadron (Khardon 1999), Martin and Geffner
(Martín and Geffner 2004), and Yoon et al. (Yoon, Fern,
and Givan 2002) learn policies represented as decision lists
on the logical problem representation, which needs to be
hand specified. On the other hand, the literature on general-
ized planning (Srivastava, Immerman, and Zilberstein 2011;
Hu and De Giacomo 2011) has focused on computing it-
erative generalized plans that solve broad classes of prob-
lem instances, with strong formal guarantees of correctness.
While all of these strive to reuse knowledge made avail-
able during planning, the selection of a good representation
for expressing the data as well as the learned functions or
generalized plans is handcrafted. Feature sets and domain
descriptions in these approaches are specified by experts us-
ing formal languages such as PDDL (Fox and Long 2003).
Similarly, approaches such as case-based planning (Spalzzi
2001), approaches for extracting macro actions (Fikes, Hart,
and Nilsson 1972; Scala, Torasso, and others 2015) and
for explanation based plan generalization (Shavlik 1989;
Kambhampati and Kedar 1994) rely on curated vocabularies
and domain knowledge for representing the appropriate con-
cepts necessary for efficient generalization of observations
and the instantiation of learned knowledge. Our approach
requires as input only a set of successful plans and their
executions—our neural network architecture is able to learn
a reactive policy that predicts the best action to execute based

on the current state of the environment without any additional
representational expressions. The current state is expressed
either as an image (Sokoban) or as an instance of the graph
data structure (TSP).

Neural networks have previously been used for learning
heuristic functions (Ernandes and Gori 2004). Recently, deep
convolutional neural networks (DNNs) have been used to
automatically extract expressive features from data, lead-
ing to state-of-the-art learning results in image classification
(Krizhevsky, Sutskever, and Hinton 2012), natural language
processing (Sutskever, Vinyals, and Le 2014), and control
(Mnih et al. 2015), among other domains. The phenomenal
success of DNNs for across various disciplines motivates us
to investigate whether DNNs can learn useful representations
in the learning for planning setting as well. Indeed, one of
the contributions of our work is a general convolutional DNN
architecture that is suitable for learning to plan.

Imitation learning has been previously used with DNNs to
learn policies for tasks that involve short horizon reasoning
such as path following and obstacle avoidance (Pomerleau
1989; Ross, Gordon, and Bagnell 2011; Tamar et al. 2016;
Pfeiffer et al. 2016), focused robot skills (Mülling et al. 2013;
Nair et al. 2017), and recently block stacking (Duan et al.
2017). From a planning perspective, the Sokoban domain
considered here is considerably more challenging than block
stacking or navigation between obstacles. In (Tamar et al.
2016), a value iteration planning computation was embedded
within the network structure, and demonstrated successful
learning on 2D gridworld navigation. Due to the curse of
dimensionality, it is not clear how to extend that work to
planning domains with much larger state spaces, such as
the Sokoban domain considered here. In that work the state
space was a 2D grid world with local connectivity, making
value iteration tractable. However, for Sokoban, the state
must include the position of both the agent and the objects,
making it much larger than a 2D grid world. While one can
construct such a state space, running value iteration on it
would be too slow. Another alternative is to try to embed
the Sokoban problem in some 2D grid world and run VI
on it. This method performs significantly worse than our
proposed method. Concurrently with our work, Weber et
al. (Weber et al. 2017) proposed a DNN architecture that
combines model based planning with model free components
for reinforcement learning, and demonstrated results on the
Sokoban domain. In comparison, our IL approach requires
significantly less training instances of the planning problem
(over 3 orders of magnitude) to achieve similar performance
in Sokoban.

The ‘one-shot’ techniques in (Duan et al. 2017), however,
are complimentary to this work. The impressive Alpha-Go-
Zero (Silver et al. 2017) program learned a DNN policy for
Go using reinforcement learning and self play. Key to its
success is the natural curriculum in self play, which allows
reinforcement learning to gradually explore more compli-
cated strategies. A similar self-play strategy was essential for
Tesauro’s earlier Backgammon agent (Tesauro 1995). For the
goal-directed planning problems we consider here, it is not
clear how to develop such a curriculum strategy, although our
leapfrogging idea takes a step in that direction. Extending
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Figure 1: The Sokoban domain (best viewed in color). In Sokoban the agent (red dot) needs to push around movable objects
(purple dots) between unmovable obstacles (blue squares) to a goal position (green square). In this figure we show a challenging
Sokoban instance with one object. From left to right, we plot several steps in the shortest plan for this task: arrows represent the
agent’s path, and light purple dots show the resulting object movement. This 44 step trajectory was produced by our learned
DNN policy. Note that it demonstrates reasoning about dead ends that may happen many steps after the initial state.

our work to reinforcement learning is a direction for future
research.

Our approach thus offers two major advantages over prior
efforts: (1) in situations where successful plan executions can
be observed, e.g. by observing humans solving problems, our
approach significantly reduces the effort required in design-
ing domain representations; (2) in situations where guaran-
tees of success are required, and domain representations are
available, our approach provides an avenue for automatically
generating a representation-independent heuristic function,
which can be used with arbitrary guided search algorithms.

Formal Framework
We assume the reader is familiar with the formalization of de-
terministic, fully observable planning domains and planning
problems in languages such as PDDL (Fox and Long 2003;
Helmert 2009) and present the most relevant concepts here.
A planning problem domain can be defined as a tuple
K = ⟨R,A⟩, where R is a set of binary relations; and A is
a set of parameterized actions. Each action in A is defined
by a set of preconditions categorizing the states on which it
can be applied, and the set of instantiated relations that will
changed to true or false as a result of executing that action.
A planning problem instance associated with a planning do-
main can be defined as Π = ⟨E , s0, G⟩, where E is a set of
entities, s0 is an initial state and G is a set of goal conditions.
Relations in R instantiated with entities from E define the set
of grounded fluents, F . Similarly, actions in A instantiated
with appropriately entities in E define the set of grounded
actions, denoted as A[E ]. The initial state, s0, for a given
planning problem is a complete truth valuation of fluents in
F ; the goal condition, G, is a truth valuation of a subset of
the grounded fluents in F .

As an example, the discrete move action could be repre-
sented as follows:

Move(loc1, loc2) :

{
pre : RobotAt(loc1),

eff : ¬RobotAt(loc1), RobotAt(loc2).

We introduce several additional notations to the planning
problem, to make the connection with imitation learning
clearer. Given a planning domain and a planning problem
instance, we denote by S = 2F the state space of the planning
problem. A state s ∈ S corresponds to the values of each

fluent in F . The task in planning is to find a sequence of
grounded actions, a0, . . . , an – the so called plan – such that
an(. . . (a0(s0)) . . .) |= G.

In Sokoban, the domain represents the legal movement
actions and the notion of movement on a bounded grid, a
problem instance represents the exact grid layout (denoting
which cell-entities are blocked), the starting locations of the
objects and the agent, and the goal locations of the objects.

We denote by o(Π, s) the observation for a problem in-
stance Π when the state is s. For example, o can be an image
of the current game state (Figure 1) for Sokoban. We let
τ = {s0, o0, a0, s1, . . . , sg, og} denote the state-observation-
action trajectory implied by the plan. The plan length is the
number of states in τ .

Our objective is to learn a generalized behavior repre-
sentation that efficiently solves multiple problem instances
for a domain. More precisely, given a domain K, and a
problem instance Π, let OK,Π be the set of possible ob-
servations of states from Π. Given a planning problem do-
main K = ⟨R,A⟩ we define a generalized reactive pol-
icy (GRP) as a function mapping observations of problem
instances and states to actions: GRPK : ∪Π{OK,Π} →
∪Π{A[EΠ]}, where EΠ is the set of entities defined by the
problem Π and the unions range over all possible problem
instances associated with K. Further, GRPK is constrained
so that the observations from every problem instance are
mapped to the grounded actions for that problem instance
(∀Π GRPK(OK,Π) ⊆ A[EΠ]). This effectively general-
izes the concept of a policy to functions that can map states
from multiple problem instances of a domain to action spaces
that are legal within those instances.
Imitation Learning In imitation learning (IL), demon-
strations of an expert solving a problem are given in
the form of observation-action trajectories Dimitation =
{o0, a0, o1, . . . , oT , aT }. The goal is to find a policy – a map-
ping from observation to actions a = µ(o), which imitates the
expert. A straightforward IL approach is behavioral cloning
(Pomerleau 1989), in which supervised learning is used to
learn µ from the data.

Learning Generalized Reactive Policies
We assume we are given a set Dtrain of Ntrain problem in-
stances {Π1, . . . ,ΠNtrain}, which will be used for learning
a GRP, and a set Dtest of Ntest problem instances that will
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be used for evaluating the learned model. We also assume
that the training and test problem instances are similar in
some sense, so that relevant knowledge can be extracted from
the training set to improve performance on the test set. Con-
cretely, both training and test instances come from the same
distribution.

Our approach consists of two stages: a data generation
stage and a policy training stage.
Data generation We generate a random set of problem
instances Dtrain. For each Π ∈ Dtrain, we run an off-the-shelf
planner to generate a plan and corresponding trajectory τ ,
and then add the observations and actions in τ to Dimitation. In
our experiments we used the Fast-Forward (FF) planner (Jörg
Hoffman 2001), though any other PDDL planner can be used
instead.
Policy training Given the generated data Dimitation, we use
IL to learn a GRP µ. The learned policy µ maps an observa-
tion to action, and therefore can be readily deployed to any
test problem in Dtest.

One may wonder why such a naive approach would even
learn to produce the complex decision making ability that
is required to solve unseen instances in Dtest. Indeed, as
we show in our experiments, naive behavioral cloning with
standard shallow neural networks fails on this task. One of
the contributions of this work is the investigation of DNN
representations that make this simple approach succeed.

Data Bootstrapping
In the IL literature (e.g., (Pomerleau 1989; Ross, Gordon, and
Bagnell 2011)), the policy is typically structured as a mapping
from the observation of a state to an action. However, GRPs
need to consider the problem instance while generating an
action to be executed since different problem instances may
have different goals. Although this seems to require more
data, we present an approach for “data bootstrapping” that
mitigates the data requirements.

Recall that our training data Dimitation consists of Ntrain tra-
jectories composed of observation-action pairs. This means
that the number of training samples for a policy mapping
state-observations to actions is equal to the number of
observation-action pairs in the training data. However, since
GRPs use the goal condition in their inputs (captured by a
problem instance),any pair of observations from successive
states (o(Π, si), o(Π, sj)) and the intermediate trajectory in
an execution in Dtrain can be used as a sample for training
the policy by setting sj as a goal condition for the interme-
diate trajectory. Our reasoning for this data bootstrapping
technique is based on the following fact:
Proposition 1. For a planning problem Π with initial state
s0 and goal state sg, let τopt = {s0, s1, . . . , sg} denote the
shortest plan from s0 to sg. Let µopt(s) denote an optimal
policy for Π in the sense that executing it from s0 generates
the shortest path τopt to sg. Then, µopt is also optimal for a
problem Π with the initial and goal states replaced with any
two states si, sj ∈ τopt such that i < j.

Proposition 1 underlies classical planning methods such
as triangle tables (Fikes, Hart, and Nilsson 1972). Here, we
exploit it to design our DNN to take as input both the current

observation and a goal observation. For a given trajectory of
length T , the bootstrap can potentially increase the number of
training samples from T to (T − 1)2/2. In practice, for each
trajectory τ ∈ Dimitation, we uniformly sample nbootstrap pairs
of observations from τ . In each pair, the first observation is
treated as the current observation, while the last observation
is treated as the goal observation1. This results in nbootstrap+T
training samples for each trajectory τ , which are added to a
bootstrap training set Dbootstrap to be used instead of Dimitation
for training the policy. 2

Network Structure
We propose a general structure for a convolutional network
that can learn a GRP.

Our network is depicted in Figure 2. The current state
and goal state observations are passed through several layers
of convolution which are shared between the action predic-
tion network and the plan length prediction network. There
are also skip connections from the input layer to to every
convolution layer.

The shared representation is motivated by the fact that both
the actions and the overall plan length are integral parts of
a plan. Having knowledge of the actions makes it easy to
determine plan length and vice versa, knowledge about the
plan length can act as a template for determining the actions.
The skip connections are motivated by the fact that several
planning algorithms can be seen as applying a repeated com-
putation, based on the planning domain, to a latent variable.
For example, greedy search expands the current node based
on the possible next states, which are encoded in the domain;
value iteration is a repeated modification of the value given
the reward and state transitions, which are also encoded in the
domain. Since the network receives no other knowledge about
the domain, other than what’s present in the observation, we
hypothesize that feeding the observation to every conv-net
layer can facilitate the learning of similar planning compu-
tations. We note that in value iteration networks (Tamar et
al. 2016), similar skip connections were used in an explicit
neural network implementation of value iteration.

For planning in graph domains, we propose to use graph
convolutions, similar to the work of (Dai et al. 2017). The
graph convolution can be seen as a generalization of an image
convolution, where an image is simply a grid graph. Each
node in the graph is represented by a feature vector, and linear
operations are performed between a node and its neighbors,
followed by a nonlinear activation. A detailed description is
provided in the supplementary material. For the TSP problem
with n nodes, we map a partial Hamiltonian path P of the
graph to a feature representation as follows. For each node,
the features are represented as a 3-dimensional binary vector.

1In our experiments, we used the FF planner, which does not
necessarily produce shortest plans. However, Proposition 1 can be
extended to satisficing plans.

2Note that for the Sokoban domain, goal observations in the test
set (i.e., real goals) do not contain the robot position, while the goal
observations in the bootstrap training set include the robot position.
However, this inconsistency had no effect in practice, which we
verified by explicitly removing the robot from the observation.
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The first element is 1 if the node has been visited in P , the
second element is 1 if it is the current location of the agent,
and the third element is 1 if the node is the terminal node. For
a Hamiltonian cycle the terminal node is the start node. The
state is then represented as a collection of feature vectors,
one for each node. In the TSP every Hamiltonian cycle is of
length n, so predicting the plan length in this case is trivial, as
we encode the number of visited cities in the feature matrix.
Therefore, we omit the plan-length prediction part of the
network.

Generalization to Different Problem Sizes
A primary challenge in learning for planning is finding repre-
sentations that can generalize across different problem sizes.
For example, we expect that a good policy for Sokoban
should work well on the instances it was trained on, 9× 9
domains for example, as well as on larger instances, such as
12× 12 domains. A convolution-based architecture naturally
addresses this challenge.

However, while the convolution layers can be applied to
any image/graph size, the number of inputs to the fully con-
nected layer is strictly tied to the problem size. This means
that the network architecture described above is fixed to a
particular grid dimension. To remove this dependency, we
employ a trick used in fully convolutional networks (Long,
Shelhamer, and Darrell 2015), and keep only a k × k win-
dow of the last convolution layer, centered around the current
agent position. This modification makes our DNN applicable
to any grid dimension. Note that since the window is applied
after the convolution layers, the receptive field can be much
larger than k × k. In particular, a value of k = 1 worked
well in our experiments. For the graph architectures, a similar
trick is applied, where the decision at a particular node is a
function of the convolution result of its neighbors, and the
same convolution weights are used across different graph
sizes.

Experiments
Here we report our experiments on learning for planning with
DNNs. Our focus is on the following questions:

1. What makes a good DNN architecture for learning a GRP?
2. Can a useful planning heuristic be extracted from the GRP?

The first question aims to show that recent developments in
the representation learning community, such as deep convo-
lutional architectures, can be beneficial for planning. The sec-
ond question has immediate practical value – a good heuristic
can decrease planning costs. However, it also investigates a
deeper premise. If a useful heuristic can indeed be extracted
from the GRP, it means that the GRP has learned some under-
lying structure in the problem. In the domains we consider,
such structure is hard to encode manually, suggesting that the
data-driven DNN approach can be promising.

To investigate these questions, we selected two test do-
mains representative of very different classes of planning
problems. We used the Sokoban domain to represent prob-
lems where plan execution can be captured as a set of images,
and the goal takes the form of achieving a state property

(objects at their target locations). We used the traveling sales-
person problem as an exemplar for problems where plan
execution is not easy to capture as a set of images and the
goal features a temporal property.
Sokoban For Sokoban, we consider two difficulty levels:
moving a single object as described in Figure 1, and a harder
task of moving two objects. We generated training data using
a Sokoban random level generator3.

For imitation learning, we represent the policy with
the DNNs as described in Network Structure section and
optimize using Adam (Kingma and Ba 2014) (step size
0.001). When training with data bootstrapping, we selected
nbootstrap = T for generating Dbootstrap. Unless stated other-
wise, the training set used in all Sokoban experiments was
comprised of 45k observation-action trajectories from 9k
different obstacle configurations.

To evaluate policy performance on the Sokoban domain we
use execution success rate. Starting from the initial state, we
execute the learned policy deterministically and track whether
or not the goal state is reached. We evaluate performance both
on test domains of the same size the GRPs were trained on,
9×9grids, and also on larger problems. We explicitly verified
that none of the test domains appeared in the training set.

Videos of executions of our learned GRPs for Sokoban are
available at goo.gl/Hpy4e3.
TSP For TSP, we consider two different graph distributions.
The first is the space of complete graphs with edge weights
sampled uniformly in [0, 1]. The second, which we term
chord graphs, is generated by first creating an n-node graph
in the form of a cycle, and then adding 2n undirected chords
between randomly chosen pairs of nodes, with a uniformly
sampled weight in [0, 1]. The resulting graphs are guaranteed
to contain Hamiltonian cycles. However, in contrast to the
complete graphs, finding such a Hamiltonian cycle is not
trivial. Our results for the chord graphs are similar to the
complete graphs, and for space constraints, we present them
in the supplementary material. Training data was generated
using the TSP solver in Google Optimization Tools4.

As before, we train the DNN using Adam. We found it
sufficient to use only 1k observation-action trajectories for
our TSP domain. The metric used is average relative cost5,
defined as the ratio between the cycle cost of the learned
policy and the Google solver, averaged over all initial nodes
in each test domain. We also compare the DNN policy against
a greedy policy which always picks the lowest-cost edge

3The Sokoban data-set from the learning for planning compe-
tition contains only 60 training domains, which is not enough to
train a DNN. Our generator works as follows: we assume the room
dimensions are a multiple of 3 and partition the grid into 3x3 blocks.
Each block is filled with a randomly selected and randomly rotated
pattern from a predefined set of 17 different patterns. To make sure
the generated levels are not too easy and not impossible, we discard
the ones containing open areas greater than 3x4 and discard the ones
with disconnected floor tiles. For more details we refer the reader to
Taylor et al. (Taylor and Parberry 2011).

4https://developers.google.com/optimization
5For the complete graphs, all policies always succeeded in find-

ing a Hamiltonian cycle. For the chord graphs, we report success
rates in the supplementary material.
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Figure 2: Network architecture. The architecture on the left is used for Sokoban, while the one on the right is used for the TSP. A
pair of current and goal observations are passed in to a shared conv-net. This shared representation is input to an action prediction
conv-net and a plan length prediction conv-net. Skip connections from the input observations to all conv-layers are added. For
the TSP network, we omitted the plan length prediction, as the features directly encode the number of nodes visited, making
the prediction trivial. All activation functions are ReLU’s and the final one is a SoftMax. In both architectures, after the last
convolution layer, we apply a k × k window around the agents location to ensure a constant size feature vector is passed to the
fully connected layers. This effectively decouples the architecture from the problem size and allows the receptive field to be
greater than the k × k window.

leading to an unvisited node.
As in the Sokoban domain, we evaluate performance on

test domains with graphs of the same size as the training set,
4 node graphs, and on larger graphs with up-to 11 nodes.

Evaluation of Learned GRPs

Here we evaluate performance of the learned GRPs on previ-
ously unseen test problems. Our results suggest that the GRP
can learn a well-performing planning-like policy for chal-
lenging problems. In the Sokoban domain, on 9×9grids, the
learned GRP in the best performing architecture (14 layers,
with bootstrapping and a shared representation) can solve
one-object Sokoban with 97% success rate, and two-object
Sokoban with 87% success rate. Figure 1 shows a trajectory
that the policy predicted in a challenging one-object domain
from the test set. Two-object trajectories are difficult to il-
lustrate using images; we provide a video demonstration at
goo.gl/Hpy4e3. We observed that the GRP effectively learned
to select actions that avoid dead ends far in the future, as Fig-
ure 1 demonstrates. The most common failure mode is due
to cycles in the policy, and is a consequence of using a de-
terministic policy. Due to space constraints, further analysis
of failure modes is given in the supplementary material. The
learned GRP can thus be used to solve new planning problem
instances with a high chance of success. In domains where
simulators are available, a planner can be used as a fallback
if the policy fails in simulation.

Figure ?? shows the performance of the GRP policy on
complete graphs of sizes 4− 11, when trained on graphs
of the same size (respectively). For both the GRP and the
greedy policy, the cost increases approximately linearly with
the graph size. For the greedy policy, the rate of cost increase
is roughly twice the rate for the GRP, showing that the GRP
learned to perform some type of lookahead planning.

Investigation of Network Structure
We performed ablation experiments to tease out the important
ingredients for a successful GRP. Our results suggest that
deeper networks improve performance.

In Figure 3a we plot execution success rate on two-object
Sokoban, for different network depths, and with or without
skip connections. The results show that deeper networks per-
form better, with skip connections resulting in a consistent
advantage. In the supplementary material we show that a
deep network significantly outperformed a shallow network
with the same number of parameters, further establishing
this claim. The improved results for the deeper networks
suggest that for learning GRP’s – the deeper the network
the better. We note a related observation in the context of
a DNN representation of the value iteration planning algo-
rithm in (Tamar et al. 2016). However, in our experiments
the performance levels off after 14 layers. We attribute this to
the general difficulty of training deep DNNs due to gradient
propagation, as evident in the failure of training the 14 layer
architecture without skip connections, Figure 3a.

We also investigated the benefit of having a shared rep-
resentation for both action and plan length prediction, com-
pared to predicting each with a separate network. The ablation
results are presented in Table 1. Interestingly, the plan length
prediction improves the accuracy of the action prediction.

GRP as a Heuristic Generator
We now show that the learned GRPs can be used to extract
representation independent heuristics for use with arbitrary
guided search algorithms. To our knowledge, there are no
other approaches for computing such heuristics without using
hand-curated domain vocabularies or features for learning
and/or expressing them. However, to evaluate the quality
of our learned heuristics, we compared them with a few
well-known heuristics that are either handcrafted or com-
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(a) (b) (c)

Figure 3: Sokoban results. (a) Investigating DNN depth and skip connections. We plot the success rate for deterministic execution
in two-object Sokoban. Deeper networks show improved success rates and skip connections improve performance consistently.
We were unable to successfully train a 14 layer deep network without skip connections. (b,c) Performance of learned heuristic.
The GRP was trained only on 9x9 instances, and evaluated (as a heuristic, see text for more details) on larger instances. (b) shows
number of states explored (i.e., planning speed) and (c) shows plan length (i.e., planning quality). A* with the learned heuristic
produced nearly optimal plans with an order of magnitude reduction in the number of states explored.

(a) (b) (c)

Figure 4: TSP results. (a) Performance (average relative cost; see text for details) for GRPs trained and tested on problems of
sizes 4− 11, respectively. We compare the GRP with a greedy policy. (b,c) Performance of learned heuristic. The GRP was
trained on 4-node graphs, and evaluated (as a heuristic, see text for more details) on larger instances. (b) shows number of states
explored (i.e., planning speed). We compare with the minimum spanning tree heuristic, which is admissible for TSP. (c) shows
average relative cost (i.e., planning quality) compared to plans from the Google solver. Note that up to a graph of size 9, the
performance of A∗ with GRP heuristic (labeled A∗+NN generalization) was within 5% of optimal, while requiring orders of
magnitude less computation than the MST heuristic. We also present results for the leapfrogging algorithm (see text for details),
and additionally compare to a baseline of retraining the GRP with optimal data for each graph size. Note that the leapfrogging
results are very close to the results obtained with retraining, although optimal data was only given for the smallest graph size.
This shows that the GRP heuristic can be used for generating reliable training data for domains of larger size than trained on.

puted using handcrafted representations. We found that the
representation-independent GRP heuristic was competitive,
and remains effective on larger problems than the GRP was
trained on. For the Sokoban domain, the plan-length pre-
diction can be directly used as a heuristic function. This
approach can be used for state-property based goals in prob-
lems where execution can be captured using images. For the
TSP domain, we used a heuristic that is inversely proportional
to the probability of selecting the next node to visit, as the

number of steps required to create a complete cycle is not
discriminative. Full details are given in the supplementary
material.

We investigated using the GRP as a heuristic in greedy
search and A∗ search (Hart, Nilsson, and Raphael 1968). We
use two performance measures: the number of states explored
during search and the length of the computed plan. The first
measure corresponds to planning speed since evaluating less
nodes translates to faster planning. The second measure rep-
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w/ bootstrap w/o bootstrap
Predict plan length 2.211 2.481 ℓ1 norm
Predict plan length 2.205 2.319 ℓ1 norm

& actions 0.844 0.818 Succ Rate
Predict actions 0.814 0.814 Succ Rate

Table 1: Benefits of bootstrapping and having a shared repre-
sentation. To evaluate accuracy of the plan length prediction,
we measure the average ℓ1 loss (absolute difference). To
evaluate action prediction we measure the success rate on
execution. Best performance was obtained with using boot-
strapping and the shared representation. For this experiment
the training set contained 25k observation-action trajectories.

resents plan quality.
Sokoban We compare performance in Sokoban to the Man-
hattan heuristic6 in Figure 3b. In the same figure we evaluate
generalization of the learned heuristic to larger, never before
seen, instances as well as the performance of two state-of-
the-art planners: Fast Forward (FF, (Jörg Hoffman 2001))
and Fast Downward (FD, (Helmert 2006))7. The GRP was
trained on 9×9domains, and evaluated on new problem in-
stances of similar size or larger. During training, we chose the
window size k = 1 to influence learning a problem-instance-
size-invariant policy. As seen in Figure 3b the learned GRP
heuristic significantly outperforms the Manhattan heuristic
in both greedy search and A* search, on the 9x9 problems.
As the size of the test problems increases, the learned heuris-
tic shines when used in conjunction with A*, consistently
expanding fewer nodes than the Manhattan heuristic. Note
that even though the GRP heuristic is not guaranteed to be
admissible, when used with A*, the plan quality is very close
to optimal, while exploring an order of magnitude less nodes
than the conventional alternatives.
TSP We trained the GRP on 6-node complete graphs and
evaluated the GRP, used either directly as a policy or as a
heuristic within A∗, on graphs of larger size. Figure 4(b-c)
shows generalization performance of the GRP, both in terms
of planning speed (number of nodes explored) and in terms
of plan quality (average relative cost). We compare both to
a greedy policy, and to A∗ with the minimum spanning tree
(MST) heuristic. Note that the GRP heuristic is significantly
more efficient than MST, while not losing much in terms of
plan quality, especially when compared to the greedy policy.

Leap-Frogging Algorithm
The effective generalization of the GRP heuristic to larger
problem sizes motivates a novel algorithmic idea for learning
to plan on iteratively increasing problem sizes, which we
term leap-frogging. The idea is that, we can use a ‘general

6The Manhattan heuristic is only admissible in one-object
Sokoban. We tried Euclidean distance and Hamiltonian distance.
However, Manhattan distance had the best trade-off between perfor-
mance and computation time.

7FD uses an anytime algorithm, so we constrained the planning
time to be no more than 5 minutes per instance. For the problem
instances we evaluated, FD always found the optimal solution.

and optimal’ planner, such as FD, to generate data for a
small domain, of size d. We then train a GRP using this
data, and use the resulting GRP heuristic in A∗ to quickly
solve planning problems from a larger domain d′ > d. These
solutions can then be used as new data for training another
GRP on the domain size d′. Thus, we can iteratively apply
this procedure to solve problems of larger and larger sizes,
while only requiring the slow ‘general’ planner to be applied
in the smallest domain size.

In Figure 4c we demonstrate this idea in the TSP domain.
We used the solver to generate training data for a graph with
4 nodes. We then evaluate the GRP heuristic trained using
leapfrogging on larger domains, and compare with a GRP
heuristic that was only trained on the 4-node graph. Note that
we significantly improve upon the standard GRP heuristic,
while using the same initial optimal data obtained from the
slow Google solver. We also compare with a GRP heuristic
that was re-trained with optimal data for each graph size.
Interestingly, this heuristic performed only slightly better
than the GRP trained using leap-frogging, showing that the
generalization of the GRP heuristic is effective enough to
produce reliable new training data.

Conclusion
We presented a new approach in learning for planning, based
on imitation learning from execution traces of a planner. We
used deep convolutional neural networks for learning a gen-
eralized policy, and proposed several network designs that
improve learning performance in this setting, and are capa-
ble of generalization across problem sizes. In addition, we
showed that our networks can be used to extract a heuristic for
off-the-shelf planners, which led to significant improvements
over standard heuristics that do not leverage learning.

Our results on the challenging Sokoban domain suggest
that DNNs have the capability to extract powerful features
from observations, and the potential to learn the type of ‘vi-
sual thinking’ that makes some planning problems easy for
humans but very hard for automatic planners. The leapfrog-
ging results, suggest a new approach for planning – when
facing a large and difficult problem, first solve simpler in-
stances of the problem and learn a DNN heuristic that aids
search algorithms in solving larger instances. This heuristic
can be used to generate data for training a new DNN heuris-
tic for larger instances, and so on. Our preliminary results
suggest this approach to be promising.

There is still much to explore in employing deep networks
for planning. While representations for images based on deep
conv-nets have become standard, representations for other
modalities such as graphs and logical expressions are an
active research area (Dai et al. 2017; Kansky et al. 2017). We
believe that the results presented here will motivate future
research in representation learning for planning.
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Appendix
Graph Convolution Network
Consider a graph G = (V, E) with adjacency matrix A
where V has N nodes and E is the weighted edge set with
weight matrix W . Suppose that each node v ∈ V has a
corresponding feature xv ∈ Rm and consider a parametric
function fθ : R2m → Rm parameterized by θ ∈ Rf . Let
Ni : V → 2V denote a function mapping a vertex to its ith
degree neighborhood. The propagation rule is given by the
following equation

Hv = σ

⎛

⎝
∑

u∈N (v)

Auvfθ(xu, xv)

⎞

⎠ (1)

where σ is the ReLU function. Consider a graph G of size n,
with each vertex having feature vector of size C encoded in
the feature matrix X ∈ Rn×C . In the TSP experiments, we
use the propagation rule where the ij entry of the next layer
is given by

Hij = σ

⎛

⎝
∑

s∈N (i)

Asi[xs, xi,Wsi]
TΘj + bj

⎞

⎠ (2)

Here, W is the weight matrix of G, A is the adjacency matrix,
and Θ ∈ R(2C+1)×C′

is the matrix of weights that we learn
and b ∈ RC′

is a learned bias vector. Θj is the jth column
of Θ.

In the networks we used for the TSP domain, the initial
feature vector is of size C = 6. We then applied 4convolution
layers of size C = 26. We then applied a convolution of size
C = 1, corresponding to a fully connected layer. Thus, j = 1
in Hij for all i in the last convolution layer.

The final layer of the network is a softmax over Hi1, and
we select the node i with the highest score that is also con-
nected to the current node.
Relation to Image Convolution In the next proposition
we show that this graph-based propagation rule can be seen as
a generalization of a standard 2-D convolution, when applied
to images (grid graphs). Namely, we show that there exists
features for a grid graph and parameters Θ for which the
above propagation rule reduces to a standard 2-D convolution.

Proposition 2. When G is a grid graph, for a particular
choice of fθ the above propagation rule reduces to the tra-
ditional convolutional network. In particular, for a filter of
size n, choosing fθ as a polynomial of degree 2(N − 1) and
θ ∈ RN2

works.

Proof. For each node v, consider its representation as v =
(vx, vy) where (vx, vy) are the grid coordinates of the vertex.

Num Params Deep-8 Wide-2 Wide-1
556288 0.068 0.092 0.129 error rate

0.83 0.62 0.38 succ rate

Table 2: Comparison of deep vs. shallow networks. The deep
network has 8 convolution layers with 64 filter per layer. The
shallow networks contain 2 and 1 layers respectively with
256 and 512 filters per layer respectively. Clearly, deeper
networks outperform shallow networks while containing an
equal number of parameters.

Figure 5: This shows the affect of data bootstrapping on
the performance of two-object Sokoban, as a function of
the dataset size. Smaller datasets benefit more from data
augmentation.

Let a := n−1
2 . We first transform the coordinates to center

them around v by transforming u → (ux − vx, uy − vy) so
that u lies in the set [−a, a]× [−a, a].

We wish to design a polynomial g that takes the value θi,j
at location (i, j). We show that it is possible to do with a
degree 2(n−1) polynomial by construction. The polynomial
g is given by

g(x, y) :=
a∑

i= −a

a∑

j= −a

θi,j

a∏

s= −a,s ̸= i

(s+ y)
a∏

t= −a,t ̸= j

(t+ x)

(3)

To see why this is correct, note that for any (s, t) ∈ [−a, a]×
[−a, a] there is exactly one polynomial inside the summands
that does not have either of the terms (i + uy) or (j + ux)
appearing in its factorization. Indeed, by construction this
term is the polynomial corresponding to θi,j so that g(i, j) =
Cθi,j for some constant C.

The polynomial inside the summands is of degree (n −
1) + (n− 1) = 2(n− 1), so g is of degree 2(n− 1). Letting
pu denote th pixel value at node u, setting

fθ(xu, xv) := pug(xu − xv) (4)

completes the proof.

TSP domain heuristic
We can use the graph convolution network as a heuristic
inside A-star search. Given a feature encoding of a partial
cycle P , we can compute the probability pi of moving to
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(a) (b) (c)

Figure 6: Chord-graph TSP results. (a) Success rate of neural network policy on chord graphs of size 3−9, respectively. Note
that the agent is only allowed to visit each node once, so the agent may visit a node with no un-visited neighbors which is a dead
end. We also show the success rate of the greedy policy. (b) Performance of neural network policy on chord graphs of size 3-9.
(c) Leapfrogging algorithm results on chord graphs of size 7-12. We compare to a baseline greedy policy

(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 7: Analysis of Failure Modes. (a-c): Success rate vs features of the domain. Plan length (a) seems to be the main factor in
determining success rate. Longer plans fail more often. While there is some relationship between planning time and success rate
(b), planning time is not always an accurate indicator, as explained in (d,e). The number of walls (c) does not affect success rate.
(d,e): Domains containing large open rooms results in a high branching factor and thus produce the illusion of difficulty while
still having a simple underlying policy. The domain in (d) took FD significantly longer time to solve, 8.6 seconds compared
to 1.6 seconds for the domain in (e), although it has a shorter optimal solution, 51 steps compared to 65 steps. This is since
the domain in (e) can be broken up into small regions which are all connected by hallways, a configuration that reduces the
branching factor and thus the overall planning speed. (f-h): Demonstration of the 2nd failure mode in Section . From the start
state, the policy moves the first object using the path shown in (f). It proceeds to move the next object using the path in (g). As
the game state approaches (h) it becomes clear that the current domain is no longer solvable. The lower object needs to be pushed
down but is blocked by the upper object, which can no longer be moved out of the way. In order to solve this level, the first
object must ether be moved to the bottom goal or must be moved after the second object has been placed at the bottom goal.
Both solutions require a look-ahead consisting of 20+ steps.

any node i. We then use the quantity (N − v)(1− pi)/2 as
the heuristic, where N is the total number of nodes and v
is the number of visited nodes in the current partial path.
Multiplying by (N − v)/2 puts the output of the heuristic on
the same scale as the current cost of the partial path.

Deep VS Shallow Networks
Here we present another experiment to further establish the
claim that the depth of the network improves performance
and not necessarily the number of parameters in the network.
In Table 2 we compare deep networks against shallow net-
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works containing the same number of parameters. Note that
we evaluate based on two different metrics. The first met-
ric is classification error on the next action, which shows
whether or not the action matches what the planner would
have done. The second metrics is execution success rate, as
defined above.

Evaluation of Bootstrap Performance
We briefly summarize the evaluation of data bootstrapping in
the Sokoban domain. Table 1 shows the success rate and plan
length prediction error for architectures with and without the
bootstrapping. As can be observed, the bootstrapping resulted
in better use of the data, and led to improved results.

While investigating the performance of data bootstrap-
ping with respect to training set size, we observed that a
non-uniform sampling performed better on smaller datasets.
For each τ ∈ Dimitation, we sampled an observation ô from
a distribution that is linearly increasing in time, such that
observations near the goal have higher probability. The per-
formance of this bootstrapping strategy is shown in Figure
5. As should be expected, performance improvement due to
data augmentation is more significant for smaller data sets.

Analysis of Failure Modes
While investigating the failure modes of the learned GRP in
the Sokoban domain, we noticed that there were two primary
failure modes. The first failure mode is due to cycles in the
policy, and is a consequence of using a deterministic policy.
For example, when the agent is between two objects a de-
terministic policy may oscillate, moving back and fourth be-
tween the two. We found that a stochastic policy significantly
reduces this type of failure. However, stochastic policies have
some non-zero probability of choosing actions that lead to a
dead end (e.g., pushing the box directly up against a wall),
which can lead to different failures. The second failure mode
was the inability of our policy to foresee long term depen-
dencies between the two objects. An example of such a case
is shown in Figure 7 (f-h), where deciding which object to
move first requires a look-ahead of more than 20 steps. A
possible explanation for this failure is that such scenarios are
not frequent in the training data. This is less a limitation of
our approach and more a limitation of the neural network,
more specifically the depth of the neural network.

Additionally, we investigated whether the failure cases can
be related to specific features in the task. Specifically, we con-
sidered the task plan length (computed using FD), the number
of walls in the domain, and the planning time with the FD
planner (results are similar with other planners). Intuitively,
these features are expected to correlate with the difficulty of
the task. In Figure 7 (a-c) we plot the success rate vs. the
features described above. As expected, success rate decreases
with plan length. Interestingly, however, several domains that
required a long time for FD were ‘easy’ for the learned policy,
and had a high success rate. Further investigation revealed
that these domains had large open areas, which are ‘hard’ for
planners to solve due to a large branching factor, but admit a
simple policy. An example of one such domain is shown in
Figure 7 (d-e). We also note that the number of walls had no

visible effect on success rate – it is the configuration of the
walls that matters, and not their quantity.
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Abstract

In this paper, we introduce a framework in which computers
learn to enact complex temporal-spatial actions by observ-
ing humans, and outline our ongoing experiments in this do-
main. Our framework processes motion capture data of hu-
man subjects performing actions, and uses qualitative spa-
tial reasoning to learn multi-level representations for these
actions. Using reinforcement learning, these observed se-
quences are used to guide a simulated agent to perform novel
actions. To evaluate, we render the action being performed in
an embodied 3D simulation environment, which allows eval-
uators to judge whether the system has successfully learned
the novel concepts. This approach complements other plan-
ning approaches in robotics and demonstrates a method of
teaching a robotic or virtual agent to understand predicate-
level distinctions in novel concepts.

Motivation
The community surrounding “learning from (human) obser-
vation” (LfO) studies how computational and robotic agents
can learn to perform complex tasks by observing humans
(Young and Hawes 2015). Work in this area can be traced
back to reinforcement learning studies by (Smart and Kael-
bling 2002) or (Asada, Uchibe, and Hosoda 1999), which
closely resembles the way humans learn. Children, as early
as 14 months old, can imitate adults in a variety of tasks,
such as turning on and off a light-box, and can even interpret
the intentions behind actions and consider all constraints in-
volved (Gergely, Bekkering, and Király 2002).

Most robots developed in the previous decades have
shipped with pre-installed programs, limited to a set of pre-
defined functionalities. Learning approaches in the robotics
community seek to move toward smarter and more adaptable
robots, for the following reasons, among others:

• Consumer desire for mobile or household assistant robots
that can perform multiple tasks with a flexible apparatus,
such as multiple grasping arms (Bogue 2017). Robots
with behavioral robustness can learn from a wider range
of experiences by interacting with humans in a dynamic
environment (Hawes et al. 2017).

Copyright c⃝ 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Advances in deep learning have afforded robotic agents a
high-level understanding of embedded semantics in multi-
ple modalities, including language, gesture, object recog-
nition, and navigation. This increases the circumstances
and modalities available for robotic learning.
Event recognition and classification have achieved re-

cent relevance in human communication with robotic agents
(Paul et al. 2017). Meanwhile, lexical computational seman-
tic approaches to events (e.g., Pustejovsky (1995), Puste-
jovsky and Moszkowicz (2011)) make it clear that event se-
mantics are compositional with their arguments.

We have previously presented an approach toward facil-
itating human communication with a computational agent,
using a rich model of events and their participants (Puste-
jovsky, Krishnaswamy, and Do 2017). Formally, we have
devised a semantic framework using Multimodal Semantic
Simulations (MSS), which can be used to encode events as
programs in a dynamic logic with an operational seman-
tics. Computationally, we have been looking at event rep-
resentation through sequential modeling, using data from 3-
dimensional video captures, to distinguish between different
event classes (Do and Pustejovsky 2017a). In this work, we
aim to bridge the gap between these two lines of research by
proposing a methodology to learn programmatic event rep-
resentations from linguistic and visual event representations.

Linguistic event representation in our framework is mod-
eled as a verbal subcategorization in a frame theory, a la
Framenet (Baker, Fillmore, and Lowe 1998), with thematic
role arguments. However, we also account for extra-verbal
factors in our event type distinction. For example, we con-
sider A moves B toward C and A moves B around C to be
different event types and we learn each event type as a sepa-
rate action.

Our visual event representation comprises visual features
extracted from tracked objects in captured videos or virtual
object positions saved from a simulation environment. Both
types of feature represent information visible to humans and
observable by a machine in an object state. Using these data
points and sequences, machines can observe humans per-
forming actions through processing captured and annotated
videos, while humans can observe machines performing ac-
tions through watching simulated scenes.

Programmatic event representation can be based on for-
mal event semantics or on features that can direct simulated
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or robotic agents to perform an action with an object of given
properties. From a human perspective, the distinction be-
tween learning to recognize and learning to perform an ac-
tion might be obvious. However from a machine’s perspec-
tive, these two tasks might require different learning meth-
ods. Our work aims to demonstrate that given an appropriate
framework, it is feasible to map between them, in a manner
similar to the way humans actually learn: by matching ac-
tions to observations.

In this paper, (1) we discuss related work in AI that fo-
cuses on the learning of action and object models, including
our own past studies; (2) we discuss several technologies and
machine learning methodologies that provide the foundation
for our experiments; (3) we discuss our ongoing experiment
to learn actions; (4) we discuss our evaluation scheme and
possible extensions to our framework.

Related Work
Work on action and object representation can generally be
divided into two types of approaches: bottom-up approaches
and top-down approaches.

Bottom-up approaches include both unsupervised and su-
pervised feature-based learning. Work such as (Duckworth
et al. 2016; Alomari et al. 2017) aims for unsupervised co-
learning of object and event representations in the same step,
and introduced the notion of a learned concept as an abstrac-
tion of feature spaces. In such a framework, “learnable” con-
cepts are any distinctions meaningful to a human, such as a
facial expression, color, object property, or action distinc-
tion, and these categories can then be assigned labels based
on their commonly-occurring features. Notable supervised
learning studies include (Koppula, Gupta, and Saxena 2013),
which jointly models the human activities and object affor-
dances, or attached behaviors which the object either facil-
itates by its geometry (which we term Gibsonian) (Gibson,
Reed, and Jones 1982), or for which it is intended to be used
(which we term “telic”) (Pustejovsky 1995). Such a model
could be used to distinguish longer activities by means of la-
beling sub-activities and object affordances: for example, la-
beling a “meal preparation” and its different subtasks based
on understanding the objects involved at each step.

The foundation of our embodied event simulation is the
modeling language known as VoxML (Visual Object Con-
cept Modeling Language) (Pustejovsky and Krishnaswamy
2016). We encode verbal programs into a dynamic logic for-
mat from which we can conduct programmatic planning of
complex events from atomic subevents. This is a top-down
approach in which verbs are encoded with their subevent
structures into programmatic “voxemes,” or visual instanti-
ations of lexemes which can then be visualized and enacted
by an agent in a virtual environment. Subevent programs
may themselves be linked to other voxemes, allowing for
condition satisfaction, as in Figure 1, where “touching” is
defined as the EC (externally connected) relation in RCC
(Region Connection Calculus (Randell et al. 1992)). This
is underspecified and may be further constrained by relative
orientations between the two objects involved: x and y.

We aim to unify the two broad types of approaches
outlined above using a form of apprenticeship learning,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

touching
LEX =

[
PRED = touching

]

TYPE =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

CLASS = config
VALUE = EC

ARGS =

⎡

⎣ A1 = x:3D
A2 = y:3D

⎤

⎦

CONSTR = nil

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1: Sample voxeme: [[TOUCHING]]

wherein a learning model observes an expert demonstrating
the task that we want it to learn to perform. We propose a
model, cf. (Abbeel and Ng 2004), in which reinforcement
learning is used as a backbone for planning, while estimat-
ing a reward function as measuring the progression of the
event-actions to be learned.

Background
Simulators
VoxSim Our simulated environment is built in VoxSim
(Krishnaswamy and Pustejovsky 2016), a semantically-
informed visual event simulator built on top of the Unity
game engine (Goldstone 2009). VoxSim contains a 3D agent
capable of manipulating objects in the virtual world by cre-
ating parent-child relationships between the objects and its
joints to simulate grasping. Assuming the simulated agent’s
skeleton is isomorphic to the joint structure of a physical
robot, this then allows us to simulate events in the 3D world
that represent real-world events (such as moving the virtual
robot around a virtual table that has blocks on it in a config-
uration that is generated from the positioning of real blocks
on a real table). The embodied agent can perform a set of
simple actions:
• ENGAGE: grasp object near its end-effector.
• MOV E(x): move end-effector (hand) to 3D point x,

with parent limb motions calculated using inverse kine-
matics

• DISENGAGE: ungrasp current object, and retract the
agent to standing position.
The simulation environment is used to demonstrate the

agent’s understanding of learned behavior, by enacting new
behaviors over a set of virtual objects. Scenes generated by
VoxSim will be used to evaluate performance of the system,
as discussed later.

Simplified Simulator For the updating loops in our rein-
forcement learning algorithm, we want to simulate obser-
vational data similar to the real captured data faster than
real-time for effective computation. As a real-time, graph-
ics heavy simulator, VoxSim is not feasible for this portion
of the task. We are aware of a few other physical simula-
tion environments such as Gazebo1, but as we do not focus
on physical constraints in this study, so we implemented our
own simplified simulator in Python.

1http://gazebosim.org/
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Figure 2: An event “Move A around B” projected into sim-
ulator. A is projected as a red square, B as a green square

Our set of learnable actions is limited to ones that can
be easily approximated in 2D space. 3D captured data is
transformed into simplified simulator space by projecting it
onto a 2D plane defined by the surface of the table used for
performing the captured interaction. Our 2D simulator has
the following features:
• Each object is represented as a polygon (or square), with

a transform object that stores its position, rotation, and
scale.

• The space is constrained so objects do not overlap.
• Speed can be specified so that object movement can be

recorded as a sequence of feature vectors interpolated
from frame to frame.

Qualitative Spatial Reasoning
Qualitative spatial reasoning (QSR), a sub-field of quali-
tative reasoning, is considered to be formally akin to the
way humans understand geometry and space, due to the
cognitive advantages of conceptual neighborhood relations
and its ability to draw coarse inferences under uncertanity
(Freksa 1992). It is also considered a promising framework
in robotic planning (Cohn and Renz 2001). QSR allows
formalization of many qualitative concepts, such as near,
toward, in, around, and facilitates learning distinctions be-
tween them (Do and Pustejovsky 2017b). QSR has many
methods of accounting for relative vs. absolute relations,
such as allowing near to be thresholded relative to an exist-
ing reference point (Renz and Nebel 2007), which reinforces
the intuition that predicates such as near are inherently rel-
ative (Peters 2007). The use of qualitative predicates ensure
that scenes which are semantically close have very similar
feature descriptions. We use the following QSR types for
feature extraction.
• CARDINAL DIRECTION measures relations between two

objects as compass directions (north, northeast, etc.)
• MOVING or STATIC measures whether a point is moving

or not.
• QUALITATIVE DISTANCE CALCULUS discretizes the dis-

tance between two moving points, following (Yang and
Webb 2009).

• QUALITATIVE TRAJECTORY CALCULUS is a representa-
tion of motions between two objects by considering them
as two moving point objects (MPOs).

Figure 3: ECAT GUI showing performer interacting with
recognized and annotated objects.

Figure 4: LSTM network producing event progress function

Event Annotation Framework
We use an event capture and annotation tool developed in
our lab, ECAT (Do, Krishnaswamy, and Pustejovsky 2016),
which employs Microsoft Kinect! to capture performers in-
teracting with objects in a blocks world environment. Ob-
jects are tracked using markers fixed to their sides. They are
then projected into three dimensional space using Depth of
Field (DoF). Performers are also tracked using the Kinect!
API, which provides three dimensional inputs of their joint
points (e.g., wrist, palm, shoulder).

Learning Framework
Sequential Learning In this study, we consider a ver-
sion of Long-short term memory (LSTM) (Hochreiter and
Schmidhuber 1997) that processes sequential inputs to a se-
quence of output signals. LSTM has found utility in a range
of problems involving sequential learning, such as speech
and gesture recognition. Inputs are the feature vectors taken
from action captures or from the simplified simulator and
output is a function that corresponds to the progress of an
event. In particular, we create a function that takes a se-
quence S of feature vectors, current frame i and action e:
f(S, i, e) = 0 ≤ qi ≤ 1

The training set of sequential captured data is passed
through an LSTM network, which is fitted to predict a linear
progressing function. At the start or outside of an event span,
the network produces 0, whereas at the end, it produces 1.

Reinforcement Learning The objective of the embod-
ied agent is to generate a sequence of actions to attain a
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maximum reward, whereas our reward corresponds to how
closely the produced object movement resembles movement
of objects in the training data. Visual (tracked) information
is used to evaluate performance of the system.

Currently, the action space is continuous. Therefore, plan-
ning is carried out by selecting the action at step k (uk)
based on the current state of the system (Xk ∈ Rn). A
stochastic planning step is parameterized by policy parame-
ters θ : uk ∼ πθ(uk|xk).

This type of parameterized reinforcement learning poli-
cies is best solved by using policy gradients (Gullapalli
1990; Peters and Schaal 2008). Here, we use the REIN-
FORCE algorithm (Williams 1992), for its effectiveness in
policy gradient learning.

We consider two versions of REINFORCE, which carry
out planning in continuous and discrete search spaces, re-
spectively. For continuous space, we propose using a Gaus-
sian distribution policy πθ(u|x) = Gaussian(µ,σ). For
simplicity, the dimensions of µ and σ are the same as the de-
grees of freedom in our simplified simulator (2 dimensions
for position and 1 dimension for rotation). An artificial neu-
ral network (ANN) will be used to produce values µ and σ.
The set of weights in our ANN is the parameter θ from the
REINFORCE algorithm, learned with gradient descent.

For discrete space, we again use a qualitative reasoning
method. Specifically, the searching space for the transform
of the target location could be separated into two spaces, for
(X,Y ) coordinates and rotation r. The searching space for
(X,Y ) could be discretized according to cardinal direction
and quantized distance.

A searching method employing simple random search
with back-up is used as baseline to evaluate performance
of the progress learner. We will present some preliminary
results from this searching method.

Experiments
Here we describe our experimental setup and evaluation
plans.

Experiment
We aim to use the learning framework outlined above for
teaching an agent to perform a set of actions where it in-
teracts directly with a single object while the other objects
stay relatively static and the interaction takes place over a
continuous span.

1. An agent moves {object A} closer to {object B}
2. An agent moves {object A} away from {object B}
3. An agent moves {object A} past {object B}
4. An agent moves {object A} next to {object B}
5. An agent moves {object A} around {object B}

This set of actions differ only in their prepositional ad-
juncts, which describe different motion trajectories. Thus
for this experiment, the learning problem is reduced to one
of motion paths.

These actions are, however, generally classified into dif-
ferent event types. Using the treatment from (Pustejovsky

Figure 5: Visualizer implemented in Unity

1991), an action such as “moves {object A} next to {object
B} ” is an achievement, which means it has a logical culmi-
nation or duration. Other actions do not have a defined end-
ing, though for “moves {object A} closer to {object B} ,”
this action is ended at the point when “{object A} is next
to {object B} .” From a cognitive point of view, recognition
of these action types, except possibly for move next to, re-
quires consideration of the trajectory as well as the start and
ending points of the objects involved. For example, closer to
conceptually involves change of distance between the start
and the ending position of the moving object relative to the
static object, but a complex motion path could lead to mis-
interpretation of the action. Closer to, therefore, strongly
indicates a trajectory of the moving object toward the static
object.

By grouping the learning of different event types together,
we aim to examine the capability of a single learning frame-
work that to learn multiple event types. The reason is rather
obvious: we, as humans, can learn all of these actions with-
out prior knowledge of different action types.

For each action type, we are capturing 40 sessions of two
different performers. Block positions are randomized at the
start. We mark the beginning and end of the captured action
and give it a textual description.

We generate frame-by-frame feature vectors by employ-
ing the set of aforementioned QSR features: cardinal direc-
tion and qualitative distance between objects’ positions and
frame-to-frame difference; qualitative trajectory for each
object and frame-to-frame difference. These features are
used only for the sequential model to predict event progress,
whereas we use objects’ parameters (positions and rotations)
across consecutive frames as state of the system Xk.

Evaluation
Human evaluation will be carried out on action demonstra-
tions generated by both the 2D simulator and our lab’s 3D vi-
sualizer, VoxSim (Figure 5). In VoxSim, we create a testbed
scene with blocks on a table, similar to the setup used in
video captures. For each randomized configuration of ob-
jects (block positions and rotations), we command the vir-
tual agent to perform one of the actions, and the scene is
recorded for evaluators to judge its performance.

Our human-driven evaluation method aims to help answer
the following questions:
1. Does the virtual agent learn the concept in question? Re-
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Figure 6: A correct demonstration of “Move red block
around green block.”

Figure 7: A wrong demonstration of “Move red block
around green block.” The value beneath each frame is value
predicted by the progress learner.

flected by average score given to a demonstration when
annotators know the action label.

2. Can the virtual agent make distinctions between learned
actions? Reflected by confusion matrix when annotators
have to label the action performed in a scene.

3. Will evaluation scores on the 2D simulator significantly
differ from those on the 3D visualizer?

4. Can we use the feedback from human evaluation to im-
prove the learned model? Generated demonstrations with
feedback scores complement real, captured data, and in
some sense are better than learning by demonstration, in
that they provide a rigorous way to include negative sam-
ples.
Evaluations of this type using VoxSim-generated scenes

have already been conducted in (Krishnaswamy 2017; Kr-
ishnaswamy and Pustejovsky 2017), using Amazon Me-
chanical Turk to crowdsource judgments. Human judgments
of a scene are given as “acceptable” or “unacceptable” rela-
tive to the event’s linguistic description.

Preliminary results
Preliminary runs of the system with brute-force searching
show that the progress learner can help to generate correct
demonstrations (Fig. 6), but sometimes produces deviations
(Fig. 7), probably because of the lack of negative training
samples. We hope that incorporating feedback from evalua-
tors will improve the overall performance of the learner.

We also provide a quantitative breakdown of a small-scale
human evaluation in Table 1. Two annotators (college stu-
dents) are asked to give scores from 0 to 10 and are also
asked to give comments on any video they graded between
3 and 7 (higher scores are considered better). Evaluator
Disparity is the average of the absolute values of the dif-
ferences between scores given by two annotators over the
demonstrations of a particular action.

Action Type Average Score Evaluator Disparity
Slide Closer 5.4 1.57
Slide Away 6.48 2.37
Slide Next To 5.55 1.7
Slide Past 6.38 1.9
Slide Around 2.75 1.03

Table 1: Evaluation

Evaluator comments provide some insight into bad
demonstrations. Typical comments on Slide Next To include
“Need to be even closer”, while on Slide Closer To a typical
comment is “The blocks touched.” That suggests some con-
fusion between these two actions, which requires a method
to help distinguish them. Three reasons are given by eval-
uators for low scores on Slide Around demonstrations: the
movement being not smooth, one or more additional steps
needed for completion, and many cases where the algorithm
does not generate the proper trajectory.

Code, experimental and evaluation results can be found
on GitHub2. Complete experimental results will be forth-
coming at that address.

Conclusion
Two different lines of research may be extended from this
framework. One involves a learning mechanism for more
complex actions, such as “make a row from given objects,”
and one involves learning the “manner of motion” of actions.

Learning complex actions from simpler actions requires
an additional semantic framework for objects and actions.
For example, to learn “make a row from given objects” given
observations of 2-unit and 3-unit rows, the learner needs to
be equipped with the concept of recursion, the concept of
a composite object made from elementary objects (e.g. the
size and shape of the composite object), and other abstract
concepts, such as object axis and extension of a structure
along said axis.

Learning the manner aspect of actions requires a finer-
grained treatment of object affordances. For example, for
the learner to distinguish “rolling a bottle” and “sliding a
bottle,” we need to equip it with a reasoning mechanism to
determine how an object’s pose and position dictate its af-
fordances. VoxML, the underlying platform to the VoxSim
system, supports modeling these types of affordance distinc-
tions, so reference to the VoxML semantics of objects and
events can provide the reasoner with the mechanism for dis-
tinguishing these behavior types, as illustrated by (Krish-
naswamy and Pustejovsky 2016).
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Abstract

We investigate the scenario that a robot needs to reach a des-
ignated goal after taking a sequence of appropriate actions in
a non-static environment that is partially structured. One ap-
plication example is to control a marine vehicle to move in
the ocean. The ocean environment is dynamic and the ocean
waves typically result in strong disturbances that can disturb
the vehicle’s motion.
Modeling such dynamic environment is non-trivial, and in-
tegrating such model in the robotic motion control is partic-
ularly difficult. Fortunately, the ocean currents usually form
some local patterns (e.g. vortex) and thus the environment
is partially structured. The historically observed data can be
used to train the robot to learn to interact with the ocean flow
disturbances. In this paper we propose a method that applies
the deep reinforcement learning framework to learn such par-
tially structured complex disturbances. Our preliminary re-
sults show that, by training the robot under artificial and real
ocean disturbances, the robot is able to successfully act in
complex and spatiotemporal environments.

Introduction and Related Work
Acting in unstructured environments can be challenging es-
pecially when the environment is dynamic and involves con-
tinuous states. We study the goal-directed action decision-
making problem where a robot’s action can be disturbed by
environmental disturbances such as the ocean waves or air
turbulence.

To be more concrete, consider a scenario where an un-
derwater vehicle navigates across an area of ocean over a
period of a few weeks to reach a goal location. Underwa-
ter vehicles such as autonomous gliders currently in use can
travel long distances but move at speeds comparable to or
slower than, typical ocean currents [Wynn et al., Smith et
al.]. Moreover, the disturbances caused by ocean eddies of-
tentimes are complex to be modeled. This is because when
we navigate the underwater (or generically aquatic) vehicles,
we usually consider long term and long distance missions,
and during this process the ocean currents can change sig-
nificantly, causing spatially and temporally varying distur-
bances. The ocean currents are not only complex in patterns,
but are also strong in tidal forces and can easily perturb the

Copyright c⃝ 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Ocean currents consist of local patterns (source:
NASA). Red box: uniform pattern. Blue box: vortex. Yellow
box: meandering

underwater vehicle’ motion, causing significantly uncertain
action outcomes.

In general, such non-static and diverse disturbances are a
reflection of the unstructured natural environment, and of-
tentimes it is very difficult to accurately formulate the com-
plex disturbance dynamics using mathematical models. For-
tunately, many disturbances caused by nature are seasonal
and can be observed, and the observation data is available for
some time horizons. For example, we can get the forecast,
nowcast, and hindcast of the weather including the wind (air
turbulence) information. Similarly, the ocean currents infor-
mation can also be obtained, and using such data allows us
to train the robot to learn to interact with the ocean currents.

Recently, studies on deep and reinforcement learning have
revealed a great potential for addressing complex decision
problems such as game playing [Mnih et al., Silver et al.,
Oroojlooyjadid et al.].

We found that there are certain similarities between
our marine robots decision-making and the game play-
ing scenarios if one regards the agent’s interacting plat-
form/environment here is the nature instead of a game. How-
ever, one general critical challenge that prevents robots from
using deep learning is the lack of sufficient training data. In-
deed, using robots to collect training data can be extremely
costly (e.g., in order to get one set of marine data using
on-board sensors, it is not uncommon that a marine vehi-
cle needs to take a few days and traverse hundreds of miles).
Also, modeling a vast area of environment can be computa-
tionally expensive.

Fortunately, oftentimes the complex-patterned distur-
bance can be characterized by local patches, where a sin-
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gle patch may possess a particular disturbance pattern (e.g.,
a vortex/ring pattern) [Oey, Ezer, and Lee], and the total
number of the basic patterns are enumerable. Therefore,
we are motivated by training the vehicle to learn those lo-
cal patches/patterns offline so that during the real-time mis-
sion, if the disturbance is a mixture of a subset of those
learned patterns, the vehicle can take advantage of what it
has learned to cope with it easily, thus reducing the compu-
tation time for online action prediction and control. We use
the iterative linear quadratic regulator [Li and Todorov] to
model the vehicle dynamics and control, and use the pol-
icy gradient framework [Levine and Koltun] to train the net-
work. We tested our method on simulations with both artifi-
cially created dynamic disturbances as well as from a history
of ocean current data, and our preliminary results show that
the trained robot achieved satisfying performance.

Technical Approach
We use the deep reinforcement learning framework to model
our decision-making problem. Specifically, we use s, a to
denote the robot’s state and action, respectively. The input
of the deep network is the disturbance information which
is typically a vector field. Our goal is to obtain a stochas-
tic form of policy πθ(s, a) = P(a|s, θ) paramterized by θ
(i.e., weights of the neural network) that maximizes the dis-
counted, cumulative reward Rt =

∑T
t′= t γ

t′−trt′ , where T
is a horizon term specifying the maximum time steps and
rt is the reward at time t and γ is a discounting constant
between 0 and 1 that ensures the sum converges. A deep
convolutional neural network is used to approximate the op-
timal action-value function Q∗(s, a) = max

π
E[Rt|st, at,π].

More details of the basic model can be found in [Mnih et
al.].

Network Design
Since the ocean currents data over a period is available, we
build our neural network with an input that integrates both
the ocean (environmental) and the vehicle’s states. The envi-
ronmental state here is a vector field representing the ocean
currents (their strengths and directions). Fig. 2 shows the
structure of the neural network.

Specifically, the input consists of two components: envi-
ronment and vehicle states. The environment component has
three channels, where the first two channels convey informa-
tion of the x-axis and y-axis of the disturbance vector field.
Since in the environment we need to define goal states, and
there may be obstacles, thus, we use a third channel to cap-
ture such information. In greater detail, we assume that each
grid of the input map has three forms: it can be occupied by
obstacle (we set its value -1), or be free/empty for robot to
transit to (with value 0), or be occupied by the robot (with
value 1). The other component of the input is a vector that
contains vehicle state information, including the vehicle’s
velocity and its direction towards the goal. Note that we do
not include the robot’s position in input because we want the
robot to be sensitive only to environmental dynamics but not
to specific (static) locations.

Environ-
ment

Vehicle States

Convolutional Layer 1

Convolutional Layer 2

FC Layer 1

FC Layer 2

Softm
ax

Rew
ards

Drop Out

Convolutional Layer 3

FC Layer v1

FC Layer v2

Figure 2: Neural Network Structure

The design of internal hidden layers is depicted in Fig. 2.
The front 3 convolutional layers process the environment
information, while the vehicle states begin to be combined
starting from the first fully connected (FC) layer. The reason
of such a design lies in that, the whole net could be regarded
as two sub-nets that are not strongly correlated: one sub-
net is used to characterize features of disturbances, which is
analogous to that of image classification; the other sub-net is
a decision component for choosing the best action strategy.
In addition, such separation of input can reduce the number
of parameters so that the training process can be accelerated.

After each convolutional layer a max-pool is applied. The
vehicle states will pass through 2 FC layers, and then are
combined with the environmental component output from
convolutional layer 3 as the input to a successive FC Layer
1. Between FC Layer 1 and 2 there exists a drop-out layer
to avoid overfitting. The Softmax layer is used to normal-
ize outputs for generating a probability distribution that can
be used for sampling future actions. Additionally, the loss
funciton is calculated using this probability distribution as
well as the actual rewards.

Loss Function and Reward
We employ the policy gradient framework for solution con-
vergence. With the stochastic policy πθ(s, a) and the Q-
value Qπθ (s, a) for the state-action pair, the policy gradient
of loss function is L(θ) can be defined as follows:

∇θL(θ) = Eπθ

[
Qπθ (s, a)∇θlogπθ(s, a)

]
. (1)

To improve the sampling efficiency and accelerate the
convergence, we adopt the importance sampling strategy us-
ing guided samples [Levine and Koltun].

With the objective of reaching the designated goal, our re-
warding mechanism is therefore to minimize the cost from
start to goal. The main idea is to reinforce with a large pos-
itive value for those correct actions that lead to reaching the
goal quickly, and punish those undesired actions (e.g., those
take long time or even fail to reach the goal) with small or
even negative values. Formally, we define the reward r of
each trial/episode as:

r =

{
rs, succeeded,
−(αrs + (1− α)rd), failed.

(2)
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where

rs =
1∑

t πθ(s, a)||pt − pG||2
, (3)

rd = 1− e−Dmin . (4)

where ||pt − pG||2 denotes the distance from the t-th step
position to the goal state, and Dmin = mint||pt − pG||2 is
the minimum such distance along the whole path. The term
rs in Eq. (3) evaluates the state with respect to the goal state,
whereas the term rd in Eq. (4) summarizes an evaluation
over the entire path. Coefficient α ∈ [0, 1] is an empirical
value to scale between rs and rd so that they contribute about
the same to the total reward r. In our experiments α is set to
0.9.

Offline Training and Online Decision-Making
We train the robot by setting different starting and goal
positions in the disturbance field, and the experience re-
play [Mnih et al., Riedmiller] mechanism is employed.
Specifically, we define an experience as a 3-tuple (s, a, r)
consisting of state s, action a, and reward r. The idea is to
store those experiences obtained in the past into a dataset.
Then during the reinforcement learning update process, a
mini-batch of experiences is sampled from the dataset each
time for training. The process of training is described in Al-
gorithm 1, which can be summarized into four steps.

1. Following incumbent action policies, sample actions and
finish a trial path or an episode.

2. Upon completion of each episode, obtain corresponding
rewards (a list) according to whether the goal is reached,
and assign the rewards to actions taken on that path.

3. Add all these experiences into dataset. If the dataset has
exceeded the maximum limit, erase as many as the oldest
ones to satisfy the capacity.

4. Sample a mini-batch of experiences from the dataset. This
batch should include the most recent path. Then shuffle
this batch of data and feed them into the neural network
for training. If current round number is less than the max
training rounds, go back to step 1.

With the offline trained results, the decision-making is
straightforward: only one forward propagation of the net-
work with small computational effort is needed. This also
allows us to handle continuous motion and unknown states.

Results
We validated the method in the scenario of marine robot
goal-driven decision-making, where the ocean disturbances
vary both spatially and temporally.The simulation environ-
ment was constructed as a two dimensional ocean surface,
and the spatiotemporal ocean currents are external distur-
bances for the robot and are represented as a vector field,
with each vector representing the water flow speed captured
at a specific moment in a specific location.

The robot used in simulation is a underwater glider with
a kinematic motion model with state z = (x, y,φ) including

Algorithm 1: Training
round ← 0
while round < n do

Obtain reward List⟨s, a⟩ of each episode.
experiences ← ∅
for all ⟨s, a⟩ ∈ List⟨s, a⟩ do

r ← get reward(s, a)
experiences ← experiences

⋃
⟨s, a, r⟩

end for
subset ← experiences
pad up subset to batch size with data from dataset
store experiences into dataset
shuffle subset
feed subset into neural network
perform back propagation
round ← round+ 1

end while

(a) Input (b) Input(mix)

(c) Convolutional Layer 3

Figure 3: Illustration of disturbance features captured by
hidden layer

the vehicle’s position and orientation in the world frame, re-
spectively. Since the behavior of the vehicle on the 2D ocean
surface is similar to that of the ground mobile robot, thus
we opt to use a Dubins car model to simulate its motion.
(Similar settings can be found in [Yao, Wang, and Su, Mah-
moudian and Woolsey].) The dynamics can be written as:

ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω, (5)

where control inputs u = (v,ω) are the vehicle’s net speed
and turning rate, respectively. The dynamics are obvious
nonlinear and in the discrete time case are denoted as zt+1 =
f(zt, ut). Such non-linear control problem can be solved us-
ing the iterative Linear Quadratic Regulator (iLQR) [Li and
Todorov].

Network Training
We use Tensorflow [Abadi et al.] to build and train the net-
work described in Fig. 2. In our experiments, the input vec-
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Figure 4: Demonstration of the ocean currents and a path of
the robot

tor field map is 48 × 48, and the size of dataset for action
replay is set to 10000. The learning rate is 1e − 6, and the
batch size we used for each iteration is 500. We also set the
length of each episode as 1000 steps.

Fig. 3 shows some features extracted from internal layers
of the network. Fig. 3(a) illustrates the feature of a random
disturbance vector field. Specifically, the first two channels
of Fig. 3(a) are x and y components of the vector field, and
the grey-scale color represents the strength of disturbance.
The third channel of Fig. 3(a) is a pixel map that contains
the goal point (white dot) and obstacle information (black
borders).

Other grey grids denote free place. Fig. 3(b) shows a
mixed view of the features, with three channels colored in
red, green and blue, respectively. The picture depicts a local
vortex pattern with the vortex center located near the upper
left corner. Fig. 3(c) shows outputs of convolutional layer
3, from which we can observe that the hidden layers extract
some local features.

Evaluations
We implemented two methods: one belongs to the control
paradigm and we use the basic iLQR to compute the con-
trol inputs; the other one is the deep reinforcement learning
(DRL) framework that employs the guided policy mecha-
nism, where the policy is guided by (and combined with)
the iLQR solving process [Levine and Koltun].

Artificial Disturbances We first investigate the method
using artificially generated disturbances. We tested differ-
ent vector fields including vortex, meandering, uniform, and
centripetal patterns.

For different trials, we specify the robot with different
start and goal locations, and the goal reaching rate is cal-
culated by the times of success divided by total number of
simulations.

The results in Table 1 show that within given time limits,
both the iLQR and DRL methods lead to a good success rate,

and particularly the DRL performs better in complex envi-
ronments like the vortex field; whereas the iLQR framework
has a slightly better performance in relatively mild environ-
ments where current speed is low, like the meander distur-
bance field.

Then, we test the average time costs, as shown in Table 2.
The results reveal that the trials using iLQR tend to use less
time than those of the DRL method. This can be due to the
“idealized” artificial disturbances with simple and accurate
patterns, which can be precisely handled by the traditional
control methodology.

Disturbance
pattern Method Num of

trials
Num of
success

Success
rate

Vortex DRL 50 48 0.96
iLQR 50 46 0.92

Meander DRL 50 49 0.98
iLQR 50 50 1.00

Uniform DRL 50 49 0.98
iLQR 50 48 0.96

Centripetal DRL 50 49 0.98
iLQR 50 48 0.96

Table 1: Simulation with artificially generated disturbances

Ocean Data Disturbances In this part of evaluation, we
use ocean current data obtained from the California Re-
gional Ocean Modeling System (ROMS) [Shchepetkin and
McWilliams]. The ocean data along the coast near Los An-
geles is released every 6 hours and a window of 30 days of
data is maintained and retrievable [Chao].

An example of ocean current surface can be visualized in
Fig. 4, which also demonstrates a robot’s path from execut-
ing our training result.

Because the raw ROMS ocean data covers a vast area and
practically it requires several days for the robot to travel
through the whole space, thus, we randomly cropped local
areas to evaluate our training results. Fig. 5 demonstrates a
few paths generated in such randomly selected areas.

Similar to the evaluation process for the artificial distur-
bances, we also looked into those aforementioned perfor-
mances under the real ocean disturbances. We then evalu-
ate the success rate and time cost, and Table. 3 shows the
results (robot speed does not scale to map). Fig. 5 gives a
more friendly visualization of those three areas used in our
experiments. The results indicate that in most cases the DLR
performs better than the basic iLQR strategy.

Fig. 5(c) and 5(d) show scenarios that can be challenging
due to strong vortexes. Fig. 5(c) shows that by selecting a
good path going around the vortex, the robot successfully
reached the goal state. Note, in the area 3 of Fig. 5(d), a
very curvy path (e.g., near the goal point) could occur due
to some strong vortex in certain local areas. In this example,
the ocean current around the goal area has a speed approx-
imately equal to (or even greater than) the robot’s maximal
speed, but is against the robot’s moving direction, so that the
robot cannot easily proceed, and both DRL and iLQR even-
tually failed to reach the goal in this situation. A possible
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(a) area1 (b) area2 (c) area3 (d) area3

Figure 5: Examples of robot paths under different spatiotemporal disturbance patterns.

Pattern Method Num of
trials

Average
time cost

Vortex DRL 50 20.549
iLQR 50 14.811

Meander DRL 50 16.926
iLQR 50 15.367

Uniform DRL 50 17.667
iLQR 50 17.803

Centripetal DRL 50 20.220
iLQR 50 14.792

Table 2: Average time cost under artificial disturbances

Area Method Num of
trials Success rate Average

time cost

Area 1 DRL 15 1.00 13.787
iLQR 15 0.93 16.375

Area 2 DRL 15 1.00 14.998
iLQR 15 1.00 15.530

Area 3 DRL 15 0.60 22.875
iLQR 15 0.80 19.546

Table 3: Average time cost under ocean disturbances

solution is to manipulate the robot’s maximal speed to be
larger (this however may be against the reality).

From Table 1 to Table 3, we can conclude that the DRL
framework is particularly capable of handling complex and
(partially) unstructured environments.

Conclusions
In this paper we investigate applying the deep reinforce-
ment learning framework for robotic learning and acting in
partially-structured environments. We use the scenario of
marine vehicle decision-making under spatiotemporal dis-
turbances to demonstrate and validate the framework. We
show that the deep network well characterizes local features
of varying disturbances. By training the robot under artificial
and real ocean disturbances, our simulation results indicate
that the robot is able to successfully and efficiently act in
complex and partially structured environments.
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Abstract
Learning from demonstration is an effective paradigm to
teach specific tasks to robots. However, such demonstrations
often have to be performed on the robot, which is both time-
consuming and often still requires expert knowledge (e.g.,
kinesthetically controlling the joints). It is often easier to
specify tasks at a high level of abstraction, and let the robot
figure out the grounding to the robot/agent space. We consider
how to learn such a mapping. In particular, we consider the
task of learning to navigate on a mobile robot given only an
abstraction of the path and potential landmarks. We cast this
as a learning problem between abstract and robot (grounded)
state spaces and illustrate how this works in several cases.
Through these cases, we see that the “abstract navigation”
task touches on many interesting issues related to abstraction,
and suggest avenues for further investigation.

Introduction
To tackle the high-dimensional complexity of the world and
long-horizon nature of complex tasks, agents need abstrac-
tion, the act of compressing both state and time in service
of certain goals. Much of artificial intelligence has been
devoted to manually endowing agents with abstractions,
such as via symbols (state abstraction) (Dietterich 2000;
Konidaris, Kaelbling, and Lozano-Pérez 2018) and sub-
tasks/options (temporal abstraction) (Sutton, Precup, and
Singh 1999). However, agents that operate in a continual and
lifelong setting will eventually encounter conditions unfore-
seen to the designer, and must come up with its own ab-
stractions. Existing work in learning abstractions, most no-
tably in reinforcement learning, typically require much ex-
perience within the domain, and arguably have not achieved
widespread success. Indeed, one of the challenging aspects
of abstraction is that in the time it takes to induce an abstrac-
tion and learn how to use it effectively, the specific ground /
non-abstract task could already have been solved.

In contrast, humans use abstractions very effectively. For
example, when provided a 2 -D map of a new location (e.g.,
Figure 1), people can typically follow the map to reach a
desired destination on the first try, without requiring the nu-
merous episodes of trial and error that reinforcement learn-
ers require. This feat is even more remarkable when con-

Copyright c⃝ 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Humans can navigate in new places by using ab-
stract 2 -D maps, such as by following the walking directions
depicted by the red arrows in the map above, which direct
a person to exit a certain subway exit and cross two roads
to reach an office (red square in the bottom left). They are
able to take abstract policy-related knowledge encoded in
the map, and ground the relevant actions in the real world. If
robotic agents can learn to use existing abstractions, not only
will they be easier to instruct by humans, they may even be
able to produce abstract and interpretable knowledge.

sidering that the real-world looks nothing like the 2 -D map:
it is 3 -D, is perceived from a first-person perspective (in-
stead of bird’s-eye for maps), and contains many more ob-
jects and other distractors compared to the map itself. Even
so, when encountering these completely new percepts and
‘states’, people can follow where they are on the map and
navigate as desired. Humans have mastered the abstraction
of 2 -D maps: from the current ground state in the real world,
they are able to find the corresponding abstract state as a 2 -
D point on the map, determine the appropriate next abstract
action within the abstract world, and then ground this action
into physical motion. Furthermore, humans have mastered
the entire class of such 2 -D map abstractions; given a new
instance of the abstraction (e.g, a map of a new place), hu-
mans can immediately perform the necessary grounding.

We first formalize the notion of abstraction, then frame
the problem of learning how to use existing abstractions as a
fully supervised, learning-from-demonstration problem. For
the “abstract navigation” task described above, we consider
several classes of possible abstractions, some of which are
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Figure 2: Abstraction diagram.

easy to learn, whereas others remain unsolved. Finally, we
discuss directions of ongoing and future investigation.

Related Work
The general problem setup has ties to transfer learning (Tay-
lor and Stone 2009) and learning from demonstration (Ar-
gall et al. 2009). Cobo et al. (Cobo et al. 2014) also ex-
plored learning abstractions from demonstrations, using an
approach based on feature selection and task decomposition.

The formulation of abstractions in this work is inspired
by the pioneering work of Ravindran (Ravindran 2004) and
subsequent work by Abel et al. (Abel, Hershkowitz, and
Littman 2016). Both lines of work analyze theoretical prop-
erties of abstraction in reinforcement learning.

Recently, there has been work on navigation using ab-
stract 2 -D maps such as hand-sketched maps (Boniardi et
al. 2015; 2016), floor plans (Gao et al. 2017), and mazes
(Brunner et al. 2018). However, most of these approaches
are specific to 2 -D robot/agent navigation.

Model and Problem Formulation
The agent operates in the grounded state space S and action
space A. The objective is to determine a plan or policy π :
S → A that achieves some given task in the world. The
premise of this work is that we are given an abstract solution
for the task, such as a route to follow on an abstract 2 -D
map that reaches a desired goal location. Formally, we are
given an abstraction in abstract state and action spaces S̃, Ã,
as well as an abstract policy π̃ : S̃ → Ã.

The abstract policy is a solution for the (grounded) task
if there exist abstraction functions fs : S → S̃ and fa :
Ã → A+ that can produce a grounded policy according to
the diagram in Figure 2. In particular, the requirement is:

π = fa ◦ π̃ ◦ fs (1)

To find the next ground action(s), we first lift the ground
state to the abstract state using fs, apply the given abstract
policy π̃, then ground the resulting abstract action using fa
to an executable primitive action (or action sequence, if there
is temporal abstraction). If π̃ is an abstract solution for the
task, then repeatedly applying this procedure should result
in the agent reaching the goal in its grounded space.

Our goal is to learn the abstraction functions fs and fa,
such that when presented with a new instance of the abstrac-
tion class (e.g., a 2 -D map of a new location), the agent can

follow the given abstract solution via Equation 1, i.e., trans-
fer an abstract policy to the agent’s grounded state space.

To learn the abstraction functions, we need training data.
We consider the simplest setting, where paired trajectories in
both ground and abstract spaces are provided. This is a fully-
supervised, learning-from-demonstration setting, where the
agent is shown grounded solutions to various task instances
(e.g., by guiding it through the real world), together with
annotated abstract solutions to the same problems (e.g., by
drawing the route on the 2 -D map).

Abstract Navigation
We consider several instances of a problem where the task
is to follow a specified path, given in an abstract space. The
grounded state space in all these cases is the state of the
robotic agent, which includes highly relevant state dimen-
sions such as odometry (noisy estimate of location relative
to its starting position), moderately relevant features such as
detected landmarks, and irrelevant features such as its arms’
joint angles (if it has arms) or its battery level.

Isometric path
In the simplest case, the abstract path is given as a 2 -D tra-
jectory that accurately preserves relative lengths and angles,
except possibly in a different global coordinate frame and
scale. (This would be the case if the path was specified in
most popular web mapping services such as Google Maps.)
If the abstract path is also annotated at each point with the
appropriate ground action, which could also be easily in-
ferred from an isometric 2 -D solution trajectory, then fa can
be assumed to be the identity function. The paired trajecto-
ries during training give corresponding pairs (s, s̃) of high-
dimensional ground states and 2 -D abstract states respec-
tively. Learning fs then becomes a multi-label linear regres-
sion problem (mapping s to s̃), since the ground and abstract
states are related via an affine transformation (in the case
of an isometric abstract path). In simulation, this method
alone is highly effective at ignoring irrelevant features in the
ground state s and handling zero-mean additive noise.

For abstract paths that are not perfect isometries, we need
to learn non-linear regression functions. This is still strictly
within the realm of supervised machine learning, for which
many approaches exist to learn non-linear fs functions.

The issue of orientation
The previous case provided a way to accurately find the ab-
stract (x, y) location on the provided abstract path. How-
ever, the first problem one encounters when implementing
the strategy on a point robot is orientation: if the robot is not
facing in the same direction as the path intended, then fol-
lowing the abstract policy π̃ causes the robot to deviate from
the path. The main issue is that the abstraction is insufficient
to distinguish between the canonical path-following orienta-
tion from other states sharing the same abstract (x, y).

There are several potential ways to fix this. The simplest
is to expand the abstract space to incorporate orientation θ as
well; however, this requires a more complicated abstract pol-
icy to be specified. Alternatively, the burden may be placed
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on the agent, by formulating each step of the path-following
as a subtask (instead of a primitive action), where the sub-
goal is to return to a canonical orientation. The canonical ori-
entation can be learned during training, or may be required
to be the initial heading of the robot.

More generally, incomplete abstractions are likely to be
encountered, and it would be useful to detect them and make
local corrections, such as by inserting subgoals. This points
to one argument for learning both ground and abstract tran-
sition models, T and T̃ respectively: an incomplete abstrac-
tion will not generally be able to enforce one-step consis-
tency between fs ◦ T and T̃ ◦ fs. Thus transition models
enable error detection in abstraction.

Landmarks
In typical maps, even in the case that the map is an isome-
try, there are additional features such as street names, room
numbers, and other iconic elements such as architecturally
distinct buildings. For example, in Figure 1, various street
names (black font) and store names (blue font) are given
near their respective locations. As humans, our sense of
odometry is likely worse than mobile robots, so we must
rely on these highly distinguishable landmark cues for ro-
bustness. If the robot is provided with detectors that allow it
to detect landmark features, then these detections can simply
be incorporated as additional ground state dimensions, and
we can proceed to learn fs from demonstrations via non-
linear regression. In simulation, we considered landmarks in
the form of ‘color patches’ encountered in local regions of
the world; if the color is confined to a unique region in the
abstract space, these landmarks are highly informative and
can correct for otherwise inaccurate geometric mappings.

Topological path
In the previous case, landmarks provide information that is
redundant with the geometric abstract map. Hence it is pos-
sible to remove the geometric aspects of the abstraction and
simply retain the topological information provided by land-
marks. A path in the space of landmarks can now be rep-
resented as a deterministic finite automaton; for example,
in the case of street names as landmarks, nodes may corre-
spond to streets, and edges with street intersections (with an
appropriate output ground action to perform the correct turn,
if any). Note that this abstraction only allows specifying a
single action to be repeatedly performed between two land-
marks; for example, when on a certain street, the agent can
only move in one direction on the street, until an intersection
is encountered. In this case, uniqueness of landmarks is es-
sential, since they are the only source of information, unless
transition models are also provided to enable tracking.

Richer abstractions
The initial motivation for the abstract mapping task was to
follow an abstract 2 -D map, such as the one in Figure 1. Ul-
timately, these maps are typically perceived via vision, and
it would be much easier for a robot to use existing maps
if it can process them in image form, rather than requiring
a manual encoding of the abstract policy π̃. Compared to

previous cases, using the 2 -D map in image form is inter-
esting because it is both featurally richer compared to pre-
vious abstractions, while at the same time still much lower-
dimensional with respect to the robot. One possibility for us-
ing this image-based abstraction is to extract features from
it, such as using convolutional neural networks, and to then
learn to map ground states to abstract visual features.

The automaton-based abstraction in the previous case is
also closely related to using natural language instructions
for navigation. For example, “go straight on street A for two
blocks until the intersection with street B, then turn left”
can be represented as an automaton. We can therefore con-
sider using natural language itself as an abstraction, either
by mapping the sequence of instructions to an automaton,
or by directly mapping ground states to abstract linguistic
features, as in the case for images.

Discussion
We considered the problem of learning to use existing ab-
stractions in novel environments, in the context of the prob-
lem of navigation using abstract 2 -D maps. The problem
was formulated as a fully-supervised, learning from demon-
stration problem, and several cases of potential abstraction
classes were considered. In the process of analyzing these
cases, various aspects and issues of abstraction were encoun-
tered, and many problems and solutions still lie ahead.

There remains the issue of learning the action abstraction
function fa. This is the problem of temporal abstraction,
which has arguably received greater attention in the field
thus far. One way to consider an abstract action ã is to view
it as a subgoal, which instantiates a local planning problem.
This was a potential strategy used to overcome the lack of
orientation information in the abstract 2 -D map.

So far, the problem has only been considered in the fully-
supervised setting. Although this provides the strongest sig-
nal for learning, it also requires significant effort from the
user. One possibility is provide weak supervision through re-
inforcement learning, in the extreme case only providing re-
ward if the correct path is followed. An intermediate regime
would be to still provide demonstrations, but no longer with
ground-abstract state correspondences.

Two cases in the previous section touched upon the utility
of learning transition models. The benefit so far appears to
be increased robustness in determining the correct abstract
state. Transition models are also needed for planning; if the
solution path is not provided, and only an abstract map is
given (which is the case when using a standard map), then
planning in the abstract space will be necessary. This is a
useful extension to the problem considered so far: find an
abstract policy and follow it via the same grounding mecha-
nism, with the assumption that the abstraction is a “faithful”
representation of the world with respect to the task.

The proposed approach may also provide useful theoreti-
cal analysis of abstractions. Since the problem of learning
abstractions has been transformed into one of supervised
learning, we may be able to adapt theoretical tools from
computational learning theory in this more familiar setting,
and characterize the utility of various abstractions. In partic-
ular, to use the given abstraction effectively, we had to learn

600



the abstraction function fs (and eventually fa); the complex-
ity of this learning problem tells us how practical the abstrac-
tion is. If it is difficult to learn fs, then it may not be worth
the extra learning effort for the potential reduction in repre-
sentational complexity. An abstraction may only be useful if
it is an accurate representation of the world with respect to
the task, provides some degree of information compression,
and the abstraction functions are easy to learn.
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Abstract

We review the psychological notion of affordances and exam-
ine it anew from a cognitive systems perspective. We distin-
guish between environmental affordances and their internal
representation, choosing to focus on the latter. We consider is-
sues that arise in representing mental affordances, using them
to understand and generate plans, and learning them from ex-
perience. In each case, we present theoretical claims that, to-
gether, form an incipient theory of affordance in cognitive
systems. We close by noting related research and proposing
directions for future work in this arena.

1 Introduction and Background
Intelligent agents, both human and artificial, often operate
in the context of an external environment and interact with
entities therein. The agent can interact effectively with these
objects in some ways but not others. For instance, depend-
ing on its manipulators, an agent will be able to grasp, lift,
or throw some items but not different ones. Similarly, it can
sit or recline on some objects but not others. Gibson (1977)
referred to such relationships as affordances, a term that
has been widely adopted in perceptual psychology, human-
computer interaction, and, more recently, AI and robotics.

Gibson viewed affordances as existing in the environ-
ment, but others have used the term, rather differently, to
refer to internalized models of these relations. For example,
Vera and Simon (1993) have proposed that they are encoded
as symbol structures which the agent can use to guide its de-
cision making. They mapped affordances onto both the con-
dition sides of production rules and onto perceptual chunks
to which they refer. More recently, Sahin et al. (2007) and
Zech et al. (2017) have reviewed different formalizations in
robotics, focusing on relations between agents and the envi-
ronment. We will incorporate ideas from each of these ear-
lier efforts in our own analysis.

In this paper we present a high-level theory of affordances
that makes commitments about a number of key issues. Like
Vera and Simon, we focus on internal representations of af-
fordances that describe an agent’s ability for action. How-
ever, we move beyond their treatment to make more spe-
cific statements about the role of affordances in intelligence,

Copyright c⃝ 2018, Association for the Advancement of Artificial
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focusing in turn on issues of representation, performance,
and learning. We propose theoretical postulates about affor-
dances that we feel are promising, but we do not report im-
plemented agents that incorporate these tenets or experimen-
tal evaluations of them, which we reserve for future work.

2 Representing Knowledge of Affordances
Because representation constrains both performance and
learning, we should address first how an intelligent agent
can encode affordances in memory and how they relate to
other cognitive structures. We distinguish between grounded
short-term elements, say a belief that the agent can lift a par-
ticular box, and generic long-term ones, say a predicate and
associated rule that specifies the class of situations in which
lifting is possible. The typical usage of ‘affordance’ focuses
on the grounded version, but we maintain that such elements
are always instances of generic structures, so the primary
representational challenges concern encoding the latter.

We hypothesize two distinct forms of knowledge: con-
cepts that denote classes of objects or relations among them;
and skills that specify the conditions in which multi-step ac-
tivities produce specific outcomes.1 Skills refer to concepts
when describing their conditions and effects, making the lat-
ter structures more basic than the former. This leads natu-
rally to our first theoretical postulate:

• Affordances are concepts that describe the class of situa-
tions and the characteristics of agents for which particu-
lar activities produce specific effects.

In other words, they are reified predicates that link the struc-
tures of objects and the features of agents that can use those
objects to achieve given ends. Affordances take the same
form as other concepts, in that they specify a predicate with
associated arguments and a set of conditions that describe
when they hold. The key difference is that each affordance
concept serves as the sole condition on a skill, indicating
when the latter produces its associated effects. Conceptual
memory also contains other concepts, such as ones that de-
scribe situations which result from a skill’s application.

Note that we view affordances as three-way relationships
among the way an object is used, structural aspects of that

1We have borrowed this disctintion from Li, Stacuzzi, and Lan-
gley’s (2012) ICARUS architecture, but it has roots in psychology.
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object, and characteristics of the agent that uses it. A typical
hammer has a handle with a head on one end, but it cannot
be used to drive a nail or spike unless the agent is strong
enough to lift and swing it. This means that a sledge ham-
mer may afford the hammering activity for some agents but
not others. Some conditions in an affordance concept will be
qualitative, but others will specify numeric relations, such as
whether a tool’s weight is less than what the agent can lift.

We also postulate that many affordances are matters of
degree. Some handles are easier for a given agent to grasp
than others, while some ladders are easier for that agent to
climb. This suggests that logical definitions of concepts, of-
ten assumed in AI, are insufficient. Instead, we propose that:
• Affordances are graded concepts that match situations

to greater or lesser degrees.
For instance, a hammer may be more or less usable by a per-
son depending on the difference between its weight and what
he can lift, among other factors. Probabilistic categories are
one way to support graded behavior, but any approach that
measures distance from a prototype or central tendency will
suffice. Most work in this tradition has assumed attribute-
value notations, but one can also define relational concepts
that match to different degrees (e.g., Choi 2010).

Finally, treating affordances as reified conceptual pred-
icates suggests another representational characteristic that,
we hypothesize, is especially important for describing ex-
tended activities that involve multiple steps:
• Complex affordances are decomposable into elements

that denote different aspects of usability.
For example, a tool has a hammering affordance when an
agent can grasp its handle, lift it upward, and propel its flat
head against the target. We can view each of these elements
as a distinct ‘subaffordance’ that must hold, for a given agent
and to a reasonable degree, to let the agent use a tool for
its intended function. A hammer may be light enough for a
person to lift, but it will not drive home a nail if its handle
is so slippery that it flies out of his grasp or if its head is so
narrow that it misses the target.

3 Using Knowledge of Affordances
Humans and other intelligent agents engage in two broad
classes of knowledge-based cognition. One involves inter-
preting situations and events in the environment, in some
cases the activities of other agents. For instance, we may
observe someone stacking some boxes but appear to have
difficulty lifting one that is too heavy. The simplest variant
is intention recognition, which assigns an agent’s behavior
to some known category, such as picking up a hammer or
stacking a box. A more complex version, plan understand-
ing (e.g., Meadows et al. 2014), infers an agent’s multi-step
plan, including goals it aims to achieve. Our next claim in-
volves two facets of this performance task:
• Affordances enable both proposal of hypotheses during

plan understanding and their evaluation.
To clarify hypothesis creation, suppose that we observe
someone holding a nail and reaching in the direction of two
objects, a hatchet and a screwdriver. The hatchet’s structure,

specifically its handle and the flat side of its head, can be
used to hammer the nail, suggesting this as a candidate in-
tention. The latter occurs because the hatchet’s description,
obtained through perception and inference, matches the af-
fordance conditions associated with hammering a nail. The
screwdriver does not lend itself structurally to this activity,
so it would not produce a comparable hypothesis.

The graded nature of affordances helps during evaluation
of candidate explanations. Given a set of observations, some
intentions and plans will be more plausible than others. For
example, suppose we observe someone in a room picking
up a shoe that has a flat heel. We might hypothesize that he
plans to put the object on his foot or that he plans to use it
to hammer a nail. The shoe can be used for both activities,
but it matches the affordance concept for placing on a foot
much better than it does the one for hammering. We can use
this degree of match in our evaluation of the two hypotheses
and conclude that the first alternative is more plausible.

The second performance task concerns generating activi-
ties that support one’s goals. As before, the simplest cases
involve selection of primitive actions, such as grasping a
glass or lifting a held box. More complicated variants in-
volve chaining sequences of actions into multi-step plans to
achieve the agent’s goals. This suggests another tenet:

• Affordances aid both the proposal of actions during plan
generation and their evaluation.

For instance, suppose we want a nail embedded in a wall and
we have two tools, a hatchet and a screwdriver. We might
use means-ends analysis to propose a hammering activity
that achieves the goal and then realize the hatchet, held in
a particular orientation, satisfies the affordance concept for
hammering, but the screwdriver does not. Or we might use
forward chaining to identify which affordances match the
current situation, retrieve their associated activities, and con-
sider the resulting states. Hammering the nail with the re-
versed hatchet is an applicable action that achieves the goal,
but no screwdriver-related activities are applicable. If the
nail were a screw, the situation would be inverted.

Affordances can also influence evaluation of candidate in-
tentions during the planning process. Suppose, again, that
we want a nail embedded in the wall, and that we have gen-
erated two possible intentions: hammering the nail with a
reversed hatchet and hammering it with a shoe. Both satisfy
the relational conditions of the graded affordance for ham-
mering, but the hatchet would match its specification better
than the shoe. The reasons involve both the relative abilities
for grasping the two tools and their capacities for driving the
nail into the wall even when they are held firmly.

4 Acquiring Knowledge of Affordances
Now that we have discussed the representation and use of
internal affordances, we can turn briefly to their acquistion
from experience. Recall that affordance concepts describe
the conditions under which an activity has a particular effect
for an agent. The AI community has pursued two different
approaches to learning about agents’ activities that suggest
a final theoretical postulate:
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• Primitive affordances are learned inductively whereas
complex affordances are learned analytically.

When an agent first interacts with a new object or situation,
it has little knowledge on which to build. In response, learn-
ing the conditions under which an action will have desired
effects – the affordance concept – is primarily empirical. For
example, this can occur by attempting to grasp different ob-
jects, with induction comparing configurations of successful
and unsuccesful cases (e.g., Shen and Simon 1989).

In contrast, acquisition of complex affordances occurs in
the presence of existing components, enabling use of ana-
lytic methods like those used to determine conditions on
macro-operators (Iba 1989). This involves composing the
conditions of actions not satisfied by the effects of those
that occur before them. For instance, if we have affordance
concepts for grasping a hammer’s handle, lifting it, and hit-
ting a nail with its head, then each of these would appear
as components of a complex affordance for hammering a
nail. Interactions among these elements may require induc-
tive refinement, but creation of an initial concept can occur
analytically based on a single training case. Li et al. (2012)
have adapted this compositional method to acquire defini-
tions for new conceptual predicates, in some cases recursive
ones, that serve as conditions on learned hierarchical skillls.

5 Related Research
Recent years have seen growing interest in internalized af-
fordances within the AI and robotics communities. Horton,
Chakraborty, and St. Amant (2012) review many of these
efforts, which often use visual processing to classify ob-
jects as appropriate for actions. Sahin et al. (2007) and Zech
et al. (2017) also offer insightful surveys of computational
research on the topic. We should examine how our theoreti-
cal claims relate to the growing body of work in this area.
• Affordances are concepts that map relations between

situations and agents on the effects of actions.
A review of the literature reveals that some aspects of this
statement are widely accepted but not others. Treatments
of affordances have always involved mapping objects or
situations onto action relevance, and many efforts to learn
such mappings produce conceptual descriptions or classi-
fiers. However, the notion that affordances involve inter-
actions between features of agents and features of objects
has been much less common. Stoffregen (2003) provides an
early and clear statement of this claim, but his treatment was
informal and, to our knowledge, AI and robotics papers have
only rarely incorporated his insight. We maintain that this
important idea deserves more attention in the computational
literature than it has received.
• Affordances are graded concepts that match situations

to greater or lesser degrees.
Prior researchers have not discussed this idea directly. For
instance, Sarathy and Scheutz (2016) describe an approach
that uses probabilistic rules to infer affordances of objects
for actions. Their framework shares our assumption that af-
fordances are reified concepts, but not that these mental
structures are graded. Zech et al. (2017) consider dynamic

affordances that vary with changing properties of objects,
but they remain Boolean in each case. They also suggest that
agents choose among objects based on appropriateness to a
given outcome, but stop short of proposing degrees of affor-
dance. Of course, probabilistic approaches can predict how
features of the agent and situation affect an action’s chance
of success, but graded affordances can also encode the time,
effort, and difficulty of achieving an objective. Thus, this
claim seems like an important contribution to the literature.

• Complex affordances are decomposable into elements
that denote different aspects of usability.

This idea appears in a few places but has not been explored
in detail. Zech et al. review a few papers that discuss a hi-
erarchy of affordances, including Ellis and Tucker’s (2000)
experimental studies of ‘micro-affordances’ as ‘potentiated
components’ of higher-level activities (e.g., turning a wrist
while reaching for an object). However, computational re-
searchers have generally focused on a single level of anal-
ysis. Therefore, the decomposition of complex affordances
into simpler elements, and the compositional semantics it re-
quires, is a notion that merits substantially more effort than
the community has given it to date.

• Affordances enable the proposal and evaluation of hypo-
theses during plan understanding.

This theoretical tenet is both uncontroversial and supported
in the literature, although few publications state it in these
terms. For instance, Sindlar and Meyer (2010) report a sys-
tem that uses logical reasoning about affordances to generate
hypotheses about a BDI agent’s intentions in a video game,
but also uses numeric scores to evaluate them. In contrast,
Freedman, Jung, and Zilberstein (2015) describe a proba-
bilistic approach that ranks all candidate activities, using in-
formation about tool affordances for evaluation but not hy-
pothesis generation. We encourage researchers who work in
this area to be more explicit about the ways in which affor-
dances guide their systems’ decision making.

• Affordances aid the proposal and evaluation of actions
during plan generation.

This postulate is also supported by publications in the area.
One example comes from Ugur, Oztop, and Sahin (2011),
who use learned object affordances during planning to pro-
pose candidate actions whose conditions match the current
state, but not to evaluate them. In contrast, Boularias et al.
(2015) use information about affordances, acquired by rein-
forcement learning, to evaluate alternative actions by com-
paring the values expected from their application.

• Primitive affordances are learned inductively whereas
complex affordances are learned analytically.

Nearly all computational research in this arena has focused
on acquiring primitive affordances and has relied exclusively
on inductive methods, which is consistent with the first half
of our claim. For instance, Kjellström, Romero, and Kragić
(2010) describe a statistical approach to learning primitive
affordances from observation for use in activity recognition,
whereas Ugur et al. (2011) learn action models from explo-
ration that map continuous features of objects to effect cat-
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egories. Similarly, Boularias et al. (2015) report a system
that estimates the expected values of actions in different sit-
uations, which they view as affordances, from delayed re-
wards. More interesting is recent work by Sridharan, Mead-
ows, and Gomez (2017) that learns primitive affordances in-
ductively and then combines them analytically into compos-
ite affordances on finding that sequences of actions achieve
the agent’s goals. However, this is the only work we have
found that addresses the second half of our final tenet.

In summary, a number of theoretical claims about affor-
dances appear to be novel, while others have received little
attention. Taken together, they offer a new perspective that
can drive work on embodied agents in interesting directions.

6 Concluding Remarks
In the preceding pages, we presented an account of affor-
dances in intelligent systems. Our theory postulated these
structures are reified concepts that specify when skills have
particular effects for given agents, that allow graded mem-
bership, and that can be composed from more basic affor-
dances. An intelligent system can use such structures to hy-
pothesize and evaluate candidate plans that help understand
others’ behavior and achieve its own goals. Finally, such
an agent can acquire affordance concepts from experience
through a mixture of inductive and analytic learning mecha-
nisms. We saw that others have explored some of these ideas,
but that some appear novel, and there is no existing account
of affordances that combines them into a unified theory.

In future research, we should incorporate these ideas into
an implemented system, ideally an existing agent architec-
ture that makes assumptions which are largely consistent
with the new postulates (e.g., Li et al. 2012). We should also
demonstrate the extended architecture on scenarios that il-
lustrate the representation, use, and acquisition of graded,
composite affordances for agents with different abilities. Fi-
nally, we should carry out experiments that test the benefits
of affordance-driven processing over alternative approaches
to intelligent systems. If studies reveal that this leads to bet-
ter explanations, more effective plans, and reduced search,
they will serve as evidence that supports the theory.
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Università di L’Aquila, Coppito I-67100, L’Aquila, Italy
email: {stefania.costantini, giovanni.degasperis}@univaq.it

Abstract

This paper describes the architecture that integrates DALI
MASs (Multi-Agent Systems) and ASP (Answer Set Pro-
gramming) modules for reaching goals in a flexible and
timely way, where DALI is a computational-logic-based fully
implemented agent-oriented logic programming language
and ASP modules includes solvers that allow affordable and
flexible planning capabilities. The proposed DALI MAS ar-
chitecture exploits such modules for flexible goal decompo-
sition and planning, with the possibility to select plans ac-
cording to a suite of possible preferences and to re-plan upon
need. We present an abstract case-study concerning DALI
agents which cooperate for exploring an unknown territory
under changing circumstances in an optimal or at least sub-
optimal fashion. The architecture can be exploited not only
by DALI agents, but rather by any kind of logical agent.

Introduction
Adaptive autonomous agents are capable of adapting to
partially unknown and potentially changing environments
(Knudson and Tumer 2011), (Jiming 2001). This requires
agents to be capable of various forms of commonsense
reasoning and planning over a distributed multi agent ar-
chitecture. A related work based on procedural reason-
ing system and belief desire intention (BDI) architecture
is PROPHETA (Fichera et al. 2017), an object oriented
procedural Python-based multi agent framework with a
declarative language approach, used to control autonomous
robots. Since (Costantini 2011), we advocated agent ar-
chitectures capable of smooth integration of several mod-
ules/components representing different behaviors/forms of
reasoning, possibly based upon different formalisms. There-
fore, the overall agent’s behavior can be seen as the result
of dynamic combination of these behaviors, also in conse-
quence of the evolution of the agent’s environment.

We proposed in particular to adopt Answer Set Pro-
gramming (ASP) modules, where ASP (cf., among many,
(Baral 2003; Leone 2007; Truszczyński 2007) and the refer-
ences therein) is a successful logic programming paradigm
suitable for planning and reasoning with affordable com-
plexity; many efficient implementations of ASP solvers are

Copyright c⃝ 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

freely available like: CLASP (Gebser et al. 2007), Cmod-
els (Lierler 2005), DLV (Leone et al. 2006b), Smodels (Elk-
abani, Pontelli, and Son 2004) . The DALI agent-oriented
language and framework was invented, designed and de-
veloped in our research group (De Gasperis, Costantini,
and Nazzicone 2014; Costantini and Tocchio 2002; 2004;
Costantini 2015a); the framework has been lately augmented
with a plugin for the invocation of answer set solvers so to
build specific modules. The ASP modules can be exploited
in agents in a variety of ways: for instance in the case of
reasoning about possibility and necessity, and a greater set
of reasoning contexts. We have recently enhanced the in-
tegration by adopting ASP modules for planning purposes,
allowing an agent or a MAS to choose among the various
plans that can be obtained by means of suitable preferences.

In this paper, we show an architecture based on DALI and
ASP modules to cope with complex goals, but that can be
easily generalized to other agent-oriented frameworks; goals
that can take profit from the subdivision into subgoals if one
of the following (or both) conditions as met:

• the instance size of the planning problem to be solved for
reaching the goal is too big for efficient and timely solu-
tion, the instance can be partitioned into sub-problems and
the sub-solutions can and must be re-combined/merged
together;

• the goal naturally splits into sub-goals where
plans can/must be devised separately, and then re-
combined/merged together at a later stage.

The architecture exploits not a single DALI agent but a
distributed MAS (Multi-Agent System), with suitable com-
ponents for generating and executing plans; it allows to dis-
tribute goals and sub-goals while controlling the genera-
tion/exploitation of solutions, and possible (even partial) re-
planning in case of environmental changes.

We introduce an ideal case study to show how DALI
agents can cooperate in order to explore an unknown ter-
ritory, such as what can happen in the real world upon
occurrence of some kind of catastrophic-like disruptive
events (earthquake, fire, flooding, terrorist attack), were geo-
localized information can easily become obsolete in few sec-
onds and rescue planning is needed, no matter what is the
difficulty.

We propose a solution based upon a MAS instead of a
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monolithic software solution because we consider important
that each software component, i.e. agent, should partially re-
tain its autonomy during asynchronous event processing, in
the context of agent-oriented software engineering method-
ologies (Gomez-Sanz and Fuentes-Fernández 2015) . In fact,
in this way each agent can be enriched with high-level rea-
soning/control behaviors that can coexists with the plan-
ning/executing activity. The MAS solution also permits to
distribute the computational effort among cloud comput-
ing facilities and embedded computers so to increase over-
all robustness by means of advanced features such as self-
monitoring and self-diagnostic, as shown in (Bevar et al.
2012). As discussed below the MAS can be based upon a
controller agent which partitions a planning problem, estab-
lished certain features (e.g., related to plan selection), as-
signs tasks of planning, re-planning and plan execution. ASP
modules are meant to be exploited for planning purposes.
Qualitative aspects of the proposed solution consist in: (1)
the general MAS structure, that can be customized in or-
der to cope with real-world problems; (2) the interaction be-
tween the MAS and the ASP module(s); (3) the adoption of
user preferences for choosing among possible plans.

The paper is structured as follows. In the first two sections
we recall ASP and the DALI language and framework. We
then present the proposed MAS architecture, and an abstract
case study. Finally we discuss the proposal and conclude.

Answer Set Programming in a Nutshell
“Answer set programming” (ASP) is a well-established logic
programming paradigm adopting logic programs with de-
fault negation under the answer set semantics, which (Gel-
fond and Lifschitz 1988; 1991) is a view of logic programs
as sets of inference rules (more precisely, default inference
rules). In fact, one can see an answer set program as a set of
constraints on the solution of a problem, where each answer
set represents a solution compatible with the constraints ex-
pressed by the program. For the applications of ASP, the
reader can refer for instance to (Baral 2003; Leone 2007;
Truszczyński 2007). However, planning is among the more
suitable an successful applications of ASP , cf (Son 2017;
Romero, Schaub, and Son 2017) and the references therein,
were planning in ASP is analyzed even under incomplete
information.

Syntactically, a program (or, for short, just “program”) Π
is a collection of rules of the form:

H ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n

where H is an atom, m ! 0 and n ! 0, and each Li is
an atom. Symbol ← is usually indicated with :- in practi-
cal systems. An atom Li and its negated counterpart notLi

are called literals. The left-hand side and the right-hand side
of the clause are called head and body, respectively. A rule
with empty body is called a fact. A rule with empty head is
a constraint, where a constraint of the form ← L1, ..., Ln.
states that literals L1, . . . , Ln cannot be simultaneously true
in any answer set.

Unlike a conventional logic program, a ASP program may
have several answer sets, each of which represent a consis-
tent solution to given problem and constraints, or may have
no answer set at all, which means that no solution can be

found. Whenever a program has no answer sets, it is said that
the program is inconsistent (w.r.t. consistent). In the case of
planning, each answer set (if any exists) represents a plan.

All solvers provide a number of additional features use-
ful for practical programming, that we will introduce only
whenever needed. Solvers are periodically checked and
compared over well-established benchmarks, and over chal-
lenging sample applications proposed at the yearly ASP
competition (cf. (Calimeri et al. 2012), (Gebser, Maratea,
and Ricca 2016) for recent reports).

The DALI language:
Framework and Applications

DALI (Costantini and Tocchio 2002; 2004) is an Agent-
Oriented Logic Programming language, (Costantini 2015a)
for a comprehensive and updated list of references. A DALI
agent is triggered by several kinds of asynchronous events:
external events, internal, present and past events. A DALI
MAS does not explicitly requires using a global clock mech-
anism, but temporal logic can be implemented inside agents.

External events are syntactically indicated by the postfix
E. Reaction to each such event is defined by a reactive rule,
where the special token :>. The agent remembers to have re-
acted by converting an external event into a past event (post-
fix P). An event perceived but not yet reacted to is called
“present event” and is indicated by the postfix N.

In DALI, actions (indicated with postfix A) may have or
not preconditions: in the former case, the actions are defined
by actions rules, in the latter case they are just action atoms.
An action rule is characterized by the new token :<. Simi-
larly to events, actions are recorded as past actions.

Internal events is what makes a DALI agent agent proac-
tive. An internal event is syntactically indicated by the post-
fix I, and its description is composed of two rules. The first
one contains the conditions (knowledge, past events, pro-
cedures, etc.) that must be true so that the reaction (in the
second rule) may happen. Thus, a DALI agent is able to re-
act to its own conclusions. Internal events are automatically
attempted with a default internal frequency customizable by
means of directives in the agent initialization file, where the
frequency will depend upon the very nature of each such
event, and the degree of criticality for the agent.

The DALI communication architecture implements the
DALI/FIPA protocol (Foundation for Intelligent Physical
Agents 2003), which consists of the main FIPA primitives,
plus few new primitives which are particular to DALI. The
architecture may also include a filter on communication
based on ontologies and forms of commonsense reasoning,
as shown in previous works.

The DALI programming environment at current stage of
development (De Gasperis, Costantini, and Nazzicone 2014)
offers a multi-platform folder environment, built upon Sic-
stus Prolog programs, shell scripts, Python scripts to in-
tegrate external applications, a JSON/HTML5/jQuery web
user interface to integrate into DALI applications, with a
Python/Twisted/Flask web server capable to interact with
A DALI MAS at the backend. We have recently devised
a cloud DALI implementation, reported in (Costantini, De
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Gasperis, and Nazzicone 2017; Costantini et al. 2017). In
fact, as we have since long been convinced of the poten-
tial usefulness of the DALI logical agent-oriented program-
ming language in the cognitive robotic domain, in the above-
mentioned papers we have presented the extensions to the
basic pre-existing DALI implementation with a number of
useful new features, and in particular allow a DALI MAS to
interact with robots over messages buses like ROS, YARP,
Redis event broker. As shown in (Costantini, De Gasperis,
and Nazzicone 2017), the DALI framework has been ex-
tended to “DALI 2.0” by using open sources packages, pro-
tocols and web based technologies. DALI agents can thus be
developed to act as high level cognitive robotic controllers,
and can be automatically integrated with conventional em-
bedded controllers. The web compatibility of the framework
allows real-time monitors and graphical visualizers of the
underline MAS activity to be specified, for checking the in-
teraction between an agent and the related robotic subsys-
tem. The cloud package ServerDALI allows a DALI MAS
to be integrated into any practical environment. In (Costan-
tini et al. 2017) paper we have illustrated the new “Koiné
DALI” framework, where a Koiné DALI MAS can coop-
erate without problems with other MASs, programmed in
other languages, and with object-oriented applications. In
summary, the enhanced DALI can be used for multi-MAS
applications and hybrid multi-agents and object-oriented ap-
plications, and can be easily integrated into preexistent ap-
plications.

The DALI framework has been experimented, e.g., in
applications for user monitoring and training, in emergen-
cies management (like first aid triage assignment), in se-
curity or automation contexts, like home automation or
processes control, and, more generally, in every situation
that is characterized by asynchronous events (either simple
events and/or events that are correlated to other ones even
in complex patterns). An architecture encompassing DALI
agents and called, F&K (Friendly-and-Kind) system (Aielli
et al. 2016) has been proposed for (though not restricted
to) applications the eHealth domain. F&Ks are “knowledge-
intensive” systems, providing flexible access to dynamic,
heterogeneous, and distributed sources of knowledge and
reasoning, within a highly dynamic computational environ-
ment consisting of computational entities, devices, sensors,
and services available in the Internet and in the cloud. As
a suitable general denomination for systems such as F&Ks
we propose “Dynamic Proactive Expert Systems” (DyPES):
in fact, such systems are aimed at supporting human ex-
perts and personnel or human users in a knowledgeable
fashion, so they are reminiscent of the role of traditional
expert systems. However, they are proactive in the sense
that such systems have objectives (e.g., monitoring patients,
managing resources, exploring territories, etc.) that they pur-
sue autonomously, requiring human intervention only when
needed. They are also dynamic, because they are able to ex-
ploit not only a predefined knowledge base: rather, they are
equipped with a number of reasoning modules, and they are
able to locate other such modules, and the necessary knowl-
edge and reasoning auxiliary resources. In fact, DyPESs are
characterized by “Knowledge-intensity”, in the sense that in

general a large amount of heterogeneous information and
data must be retrieved, shared and integrated in order to
reason within the system’s domain. DyPESs can be Cyber-
Physical Systems integrating software and physical compo-
nents (Khaitan and McCalley 2015), and can be able to per-
form Complex Event Processing, i.e., to actively monitor
event data so as to make automated decisions and take time-
critical actions (DALI has been in fact empowered with CEP
capabilities (Costantini 2015b)).

Agents (and in particular robotic agents) have com-
plex goals that may need to be decomposed, either hi-
erarchically or anyway into related subgoals; moreover,
such goals may change in time depending upon the inter-
action with the environment. Prolog-based logical agents
such as DALI agents but also agents written in other
agent-oriented computational-logic-based languages (e.g.,
AgentSpeak (Rao and Georgeff 1991; Bordini and Hübner
2010), GOAL (Hindriks 2009; 2010), 3APL (Dastani et al.
2004; Dastani, van Birna Riemsdijk, and Meyer 2005)) can
devise and execute plans. However, they are not easily able
to decompose goals into subgoals, evaluate (based upon
preferences) alternative plans, and re-plan if needed, pos-
sibly for some subgoals only; implementing such features
within a single agent would in fact make the agent code
heavy to understand and execute.

We have since long equipped DALI with a plugin for in-
voking ASP solvers and thus executing ASP modules. When
this module is used for planning, it would be possible to
choose among the generated plans based upon qualitative
and quantitative user preferences; the preference strategies
implemented so far are: (i) shortest plan; (ii) minimal-cost
plan; (iii) plan including a minimum/maximum number of a
certain kind of actions; we intend to implement plan evalu-
ation based upon preferences on resource consumption, fol-
lowing the principles of (Costantini and Formisano 2010;
2009; Costantini, Formisano, and Petturiti 2010).

Below we propose a DALI MAS architecture aimed at
goal decomposition, sub-goal assignment, planning and re-
planning concerning complex goals.

The ASP-MAS Architecture
In this section we illustrate the features of the proposed ar-
chitecture. The DALI MAS is intended to fulfill the so-called
bounded rationality principle (Gigerenzer 2004), which we
translate that a plan for reaching a goal shall to be de-
vised and executed in a timely manner before a ultimate
Tmax deadline. Consequently, there is a second deadline
TPlanMax < TMax by which a plan has to be computed
and selected, so that the remaining time is sufficient to exe-
cute that plan. Parameters TPlanMax and TMax are indeed
dependent of the problem domain. At the current state of
development they have to be determined by the MAS-ASP
designer and stay constant always during run-time phase.

We also consider the hypothesis that for each problem P
proposed to the MAS, a trivial solution plan can always be
computed in time TPt by using a well tested deterministic
algorithm, such that TPt is a negligible time compared to
TPs, which is the minimum time needed to generate an ac-
ceptable sub-optimal plan.
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Figure 1: DALI ASP-MAS architecture: Coordinator,
Meta-Planner, Planner, Executor agents. The MAS can
be deployed over a cloud computing architecture, thus
distributing and balancing the required computational re-
sources. The ASP module is executed via an external solver,
configurable depending on the required capabilities. The ex-
ecutor agent is supposed to actually execute the plan, possi-
bly working “in the field”, i.e., embedded in a mobile robot
or some other ad-hoc facility or mechanism. Constraints can
be used to codify knowledge about the environment, like
obstacles, target coordinates, resources, depending on the
problem domain.

Thus, given the input set TPlanMax, TMax, G,N,C,
where G is the goal, N is the instance size of the problem to
be solved (if applicable), C is the constraints set which mod-
els the dynamics and knowledge about the environment, the
MAS operates via the following steps, not necessarily in se-
quence, but in parallel whenever it is possible:

(i) Decompose the overall goal into suitable subgoal;

(ii) For each subgoal, generate an a sub-plan within the
TPlanMax deadline;

(iii) Execute the plan within the TMax deadline deploying over
the set of executors;
in case of failure (insufficient time to execute), maximize
the length of the partially executed plan;

(iv) In case of a change of conditions in the environment, i.e.
constraints change, re-plan, possibly limiting this activity
to specific subgoals resulting from the partitioning.

Since each ASP module may possibly find more than one
plan for given (sub-)goal, it is useful (as said before) to apply
a given metrics by which a plan could be preferred to another
one. The proposed DALI ASP-MAS architecture is shown in
Figure 1 and the agent behaviors are here described .

• COORDINATOR agent: this agent synchronizes all the
actions of the MAS and updates the global state of goal
solving. Its task are the following.

(a) Ensure the proper activation of the MAS and overall
self checking.

(b) Interact with the external world and whenever needed
acquire new constraints for the MAS or revise the
present goals.

(c) Control the TPlanMax and TMax deadlines.
(d) Decompose the goal into subgoals.
(e) For each subgoal, instantiate a META-PLANNER

agent, possibly providing as input the preference cri-
terion for plan selection.

(f) receive from each META-PLANNER agent the sub-
plan to be executed up to TPlanMax and deploy the
overall plan to the EXECUTOR agents set, each is
in charge of sub-plan execution within maximum time
TMax − TPlanMax.

(h) If time elapses, or new events occur, cancel the current
running plan and if applicable send a replan indication
to the META-PLANNER.

(h) Logs all events to a log server.
• META-PLANNER agent, whose tasks are the following.
(a) Receive the triggering event from the COORDINA-

TOR with new constraints to start the search for a new
plan.

(b) Generate input set of constraints and specific data
for the PLANNER agent while monitoring its per-
formances. If PLANNER agent does not deliver be-
fore TPlanMax − TPt, cancel the plan request and ask
PLANNER to generate a trivial plan .

(c) Apply plan selection accorded to preferences, either lo-
cal or set by COORDINATOR agent. It also exploits
the given preference criterium in order to select the
plan which is closer to present preferences whenever
the PLANNER returns more than one answer.

(d) If requested by COORDINATOR, ask PLANNER for
re-planning with updated input set of contraints.

• PLANNER agent, which receives as input the time
constraints TPlanMax, TMax, C%, N, F from META-
PLANNER generate the ASP program which then gener-
ates all possible sub-plan via the ASP module, if possible
within the TPlanMax deadline. If more than a single an-
swer is produced by the ASP solver, it returns all available
plans to the META-PLANNER. If no solution exists, it
generates a trivial plan (if possible). The C% parameter
encode knowledge about the sub-optimality of the desired
plan type, which coincide with the Hamiltonian plan at
100%, or refers to sub-optimal plans for lower percent-
ages.

• EXECUTOR: each agent puts into action in the real
world the specific sub-plan provided by the COORDI-
NATOR, if possible within the TMax deadline, and noti-
fies the COORDINATOR upon completion. The execu-
tor agent in general executes plans (also) embodied in a
physical components in a Cyber-Physical System, and/or
by means of robotic elements of various kinds. In Figure
1, EXECUTOR is designated as “field controller” as plan
execution is situated into some environment.
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Summarizing, the final execution made the EXECUTORs
depends on the following information:
• timing parameters, ASP program templates, static con-

straints imposed by the designer
• selected goals and preferences by the user
• the environment model built upon sensors perceptions

which define dynamic constraints
• consistency and self-checking rules in the knowledge base
• available energy and resources, which may also have non

trivial impact on hardening the constraints set.
Since in general this is a hard-NP problem, most probably

only sub-optimal plans can be generated, but with a control-
lable desirable quality by balancing user preferences, accu-
racy, and weak vs. hard constraints. The resulting behavior
should be similar to what a rational human expert would do
in similar circumstances, with the advantage of not being
limited also by human errors due to over fatigue and less
concentration. So the human could dedicate himself to su-
pervise the overall system behavior under less cognitive load
stress and intervene with appropriate common sense reason-
ing when needed, most probably when the system is produc-
ing too many trivial plans.

Abstract Case Study
The ASP-MAS architecture presented above has been in-
spired and motivated by a case-study that has been actually
implemented and experimented, and presented in (Costan-
tini, De Gasperis, and Nazzicone 2015). The overall goal in
the case study is to explore an unknown territory upon oc-
currence of some kind of catastrophic-like disruptive event
(earthquake, fire, flooding, terrorist attack, etc.). The simi-
larity comes from the idea that after such event, most of the
available geo-localized information can became obsolete in
a very short time and important decision have to be made in
order to save lives and/or deliver rescue services. So there is
a contemporary need to re-scan the territory to know were
is possible to engage rescue equipments, and to generate an
actually rescue plan that covers the maximum possible area
were is needed. So there are places were is impossible to
go (i.e. forbidden cells) and places were victims have to be
rescued (i.e. to reach cells).

For simplicity, we have modeled the territory (also called
“area”) as a set of a N ∗N parts represented as chess-
boards, i.e., squares of cells, where some cells are marked
as unreachable/forbidden, and are therefore considered as
“holes” in the chessboard. This represents the fact that the
agents may be notified by an external authority or by other
sources of the actual impossibility of traversing that loca-
tion because of some kind of obstruction/danger. The forbid-
den/unreachable locations, and their respective constraints
set, can change in time as the scenario evolves.

For the sake of experiments, the EXECUTOR agent is
embodied by a robot explorer/rescuerer 1 that each agent em-
ploys for exploration of the territory; this robot has been rep-

1not necessary a robot, also a human guided ambulance, or a
combination of UAV and human guided vehicles

resented (in the case study) as a chess’ knight piece, which
performs knight leaps. This is to signify that a real robot
(whatever its kind) will in practice have limited possibili-
ties of movement. In this way, the problem of exploration
of a single piece of territory can be modeled as a variant
of the well-known “knight tour with holes” problem, for
which well-known ASP solutions exist. The ultimate ob-
jective would be that of devising an Hamiltonian path, thus
fully exploring the given piece of territory while skipping the
forbidden squares. As however the Hamiltonian path option
may results computationally intractable with reasonable in-
stance size (already from sizes ≥ 8, or 10 using the most re-
cent ASP more efficient solvers ), we resorted to sub-optimal
solutions that the MAS is capable to generate, which adopt
soft constraints in order to visit each square as few times as
possible.

The Knight Tour with holes problem has constituted a
benchmark in recent ASP competitions, aimed at compar-
ing ASP solvers performances. We performed a number of
modifications to the original version (Calimeri and Zhou
2014) concerning: the representation of holes; the objective
of devising a path which, though not Hamiltonian, guaran-
tees a required degree of coverage with the minimum num-
ber of multiple-traversals; simple forms of loop-checking for
avoiding at least trivial loops. For the sake of completeness,
below is the sketch of our solution, formulated for the DLV
ASP solver (Leone et al. 2006a), though it might be easily
reformulated for other solvers. The key modifications to the
base solution are the following.

• We modified the reached constraint, and transformed it
into a soft constraint, so as not to be forced to finding a
Hamiltonian path.

reached(X,Y) :- move(1,1,X,Y).
reached(X2,Y2) :-

reached(X1,Y1), move(X1,Y1,X2,Y2).
:˜ cell(X,Y),

not forbidden(X,Y), not reached(X,Y).

• We added a coverage-satisfaction rule, where
coverage denotes the required degree of coverage
and number forbidden the number of holes, and V is the
instance size, i.e., the chessboard edge. The maximum
possible coverage is 100% of the available cells, i.e.,
M = V ∗V , while the minimum coverage N is computed
in terms of coverage, considering the holes. Suitable
application of the count DLV constraint (Leone et al.
2006a) guarantees the desired coverage.

coverage(95).
number_forbidden(5).
cov(N) :-

N <= #count{X,Y : reached(X,Y)} <= M,
size(V), coverage(Z),
number_forbidden(F),
M = V * V, N2 = M * Z,
N3 = N2 /100, N = N3 - F.

Experimental results have demonstrated the usefulness of
the proposed MAS architecture, that is actually able to effec-
tively cope with real-world instance sizes. The architecture
in this case study works as follows.
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• The COORDINATOR agent partitions the territory that
must be explored into a number of (possibly overlap-
ping) sections (chessboards) of reasonable size (maxi-
mum 10x10 cells), each one to be assigned to a META-
PLANNER instance.

• Each plan to be executed (exploration to be performed) is
assigned to a separate (EXECUTOR)EXLORER agent,
specifically assigned to that territory section. Each in-
stance of the META-PLANNER agent relies upon its own
associated instance of the planner agent.

• different preference policies can possibly be associated
with different sections of the territory to be explored, ac-
cording to directions provided by the user/environment.

• The COORDINATOR will devise re-planning for each
portion of the territory for which the unreachable location
have changed.

Reasonable metrics measure plans returned by the ASP
module in terms of: (i) number of cells that have to be visited
when using coverage, (ii) length of the path, (iii) presence
of loops (when the Hamiltonian constraint is released); (iv)
plan cost, in case there is a specific cost associated to each
cell. Preference criteria can then be defined by selecting one
metric, or by combining different metrics: for instance, a cri-
terium may consist in preferring the shortest path, if it does
not exceed a certain cost.

Concluding Remarks
We have proposed an ASP-MAS architecture for flexible
goal decomposition, plan formation and execution that de-
livers acceptable solution to complex problems under the
“bounded rationality principle”. In real application, a MAS
for each (class of) goal(s) would be designed, implemented
and located into the DALI cloud. In fact, all components of
the MAS will be programmed according to the goal to be
reached, i.e., to the problem to be solved. Each agent that
needs to solve a goal refers to the suitable MAS. As men-
tioned, the DALI framework allows uniform access also to
agents written in other languages/formalisms. So, the pro-
posed solution is not DALI-specific but rather can be gener-
ally adopted.
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Abstract

In this paper, we are concerned with making the execution of
abstract action plans for robotic agents more robust. To this
end, we propose to model the internals of a robot system and
its ties to the actions that the robot can perform. Based on
these models, we propose an online transformation of an ab-
stract plan into executable actions conforming with system
specifics. With our framework, we aim to achieve two goals.
First, modeling the system internals is beneficial in its own
right in order to achieve long term autonomy, system trans-
parency, and comprehensibility. Second, separating the sys-
tem details from determining the course of action on an ab-
stract level leverages the use of planning for actual robotic
systems.

Introduction
Despite promising advances in planning systems, they see
surprisingly little use in actual robotics environments. We
believe this is because solving a planning task by itself is
not sufficient to accomplish high-level behavior control of a
robotic system. For one, the robot’s platform (i.e., its hard-
ware and low-level software components) often requires ad-
ditional constraints that are ignored during planning, e.g.,
a domestic service robot participating in RoboCup@Home
(Wisspeintner et al. 2009) must calibrate its arm before per-
forming any manipulation tasks. During planning, we do not
want to plan for all the requirements of the underlying plat-
form, as this would increase the problem size significantly
and would make it infeasible in practice. However, ignoring
those constraints at the behavior level and dealing with them
at the lower levels is often impossible, because platform con-
straints may entail changes to the action plan.

Another reason for such a separation of high-level be-
havior and low-level platform is a design problem: When
modelling the domain, an agent programmer usually does
not want to deal with the robot platform. On the other
hand, a platform designer should not need to consider and
adapt the high-level behavior when modifying the platform.
Also, a robot often has to deal with failed actions, unex-
pected changes, and exogenous events. Thus, a considerable
amount of monitoring is required when executing a high-
level plan on a robot.

For these reasons, we propose a framework that allows the
modelling of the robot platform and its constraints indepen-

dent of the behavioral component. While designing the plat-
form, the user designs a self model of the robot and defines
all the constraints of the platform. The world model of the
agent can be designed without taking low-level constraints
into account. During execution, the abstract action plan is
transformed into a concrete executable plan that satisfies the
constraints of the lower levels.

To actually achieve a separation between the problem do-
main and platform-related execution concerns, the platform
needs a certain degree of “self-awareness” in terms of its
components, their capabilities, their states and their inter-
dependencies. Our goal in this paper is to sketch out re-
quirements for a logically founded constraint language that
can be used by platform experts to explicitly model compo-
nent state transitions, dependencies among them, error con-
ditions and possible recovery strategies, including the po-
tential need for human assistance. The result is an agent
system capable of self-maintenance by generating platform-
specific monitoring and recovery strategies from the plat-
form model and a platform-independent action plan. This
eliminates much of the expert intervention that is required
to keep robots running in dynamic domains, while provid-
ing a generic framework that helps in decoupling strategic
decision-making from any platform details.

Foundations & Related Work
Especially the research into planning systems that is fo-
cused on temporal coordination of (concurrent) actions is of
particular interest to our endeavour (Tsamardinos, Muscet-
tola, and Morris 1998; Jónsson et al. 2000; Kim, Williams,
and Abramson 2001; Lemai and Ingrand 2004). In theory,
it would allow generalizing both the domain logic and the
platform details as a temporal planning problem.

Temporal optimization and parallelization of platform-
dependent operations is also being performed successfully
at the task execution level. Keith et al. (2009) employ a
temporal network that describes platform constraints to re-
order and optimize the manipulator trajectories specified
by a sequential plan. Konečnỳ et al. (2014) separate the
strategic planning layer that only handles an abstract do-
main conceptualization from the detailed execution strategy
that makes a plan executable on a real robot. However, the
Consistency Based Execution Monitoring directly maps ab-
stract, but fully grounded plan elements to a domain-specific
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execution strategy, without specifying an explicit platform
model.

Kunze, Roehm, and Beetz (2011) introduce the Semantic
Robot Description Language (SRDL) to bridge the gap be-
tween purely kinematic description languages and the more
abstract level at which task specifications are usually for-
mulated. They leverage the Web Ontology Language (Bech-
hofer et al. 2004) to model how domain-specific actions
depend on platform-specific components that are required
to realize them. Waibel et al. (2011) use SRDL to imple-
ment a shared knowledge base that allows robots to improve
their search and execution strategies with previous observa-
tions possibly made by other robots. In this case, the knowl-
edge base covers both platform-specific and domain-specific
knowledge within a common deduction engine based on De-
scription Logic (Baader 2003). The works based on SRDL
are related to our work in their purpose, but differ signifi-
cantly in that the SRDL model is purely a translation layer
that sits between the abstract action plan and the executive
layer. As such, SRDL specifications cannot be used to mod-
ify execution strategies at runtime, and thus cannot be used
to dynamically deduce error recovery strategies. Mansouri
and Pecora (2016) describe a constraint-based approach to
hybrid reasoning with a meta-CSP that describes the differ-
ent types of knowledge. The CSP is solved by a meta-solver
that combines different kinds of reasoners. CHIMP (Stock et
al. 2015) uses HTNs to solve such constraint-based hybrid
reasoning tasks. HTN-based task decomposition approaches
often model platform details as part of the planning prob-
lem. Dvorák et al. (2014) limit the problem size by delegat-
ing execution monitoring to a PRS subsystem with a simple
success/failure interface.

Based on the Situation Calculus (McCarthy and Hayes
1969), the action language GOLOG allows a programmer to
intermix imperative programming with planning on a logi-
cally formulated domain model (Levesque and Lakemeyer
2008). READYLOG (Ferrein and Lakemeyer 2008) extends
the search functionality of GOLOG to allow for decision-
theoretic planning. Finzi and Pirri (2005) provide a theo-
retical integration of the Situation Calculus with temporal
constraints. De Giacomo, Reiter, and Soutchanski (1998)
define an execution monitor in Golog that allows to re-
act to unexpected changes during execution. Hofmann et
al. (2016) interleave PDDL-based planning with Golog-
based execution for monitoring purposes. Schiffer, Wort-
mann, and Lakemeyer (2010) describe an online transforma-
tion of a READYLOG program by inserting actions to satisfy
qualitative temporal platform-specific constraints, under the
assumption that agent domain and platform domain are dis-
junct.

Approach
Our goal is to design a framework that allows the user to
formulate a platform constraint model that describes inter-
nal and external dependencies of component states, both in
terms of hardware and software. An agent framework can
then turn an abstract plan into a platform-specific execution
and monitoring strategy that satisfies these constraints. This

Off

Ready for Calibration

Error

Calibrating Ready Parked

Busy

calibrate()
[4, 5]s park()

move()[0, 10]s

move()

Figure 1: A finite state machine as a platform model for
the Katana arm with three types of transitions: agent actions
(black/solid), system events (blue/dotted), exogenous events
(red/dashed). The edges are annotated with their action and
expected time bounds.

allows a separation of the high-level program from the spe-
cific platform properties while complying with the platform
constraints. In the following, we present the different com-
ponents of such a framework.

Platform Models
Figure 1 shows an example for a model of a robotic manip-
ulator arm, the Katana. Before the Katana arm can be used,
it needs to be calibrated. Initially, the arm is turned off. It
can only start its calibration process from a specific cali-
bration position, so a human assistant must move the arm
into the right position and then turn it on, which brings the
arm into the state Ready for Calibration. From that state, the
agent can decide to start the calibration. Note that this usu-
ally does not happen automatically, because the agent first
has to make sure that it is in a location that allows an arm
calibration, and second it may not need the arm at all. Since
calibration is time-consuming, it should only be done if the
arm is actually required. When the calibration is finished,
the component driver triggers a transition to either the Error
state or the Ready state. Similar to Schiffer, Wortmann, and
Lakemeyer (2010), we model system components as state
automata. But as the example in Fig. 1 shows, we need to
differentiate between different kinds of transitions: 1. ac-
tions by the agent (black), 2. events triggered by the system
(blue), 3. exogenous events (red).

Suitable Automata Models The platform model shown in
Figure 1 is a finite state automaton with multiple edge types.
However, more expressive automata models may be required
to represent platform components. Consider a navigation
stack that depends on the states of several low-level com-
ponents, e.g., collision avoidance and localization. Each of
these components will be modeled separately, but we might
also want to formulate constraints on composite states cov-
ering multiple components. Hierarchical state machines as
described in Girault, Lee, and Lee (1999) may be suitable to
formulate such component-level abstractions. Timed transi-
tions, such as the transition Calibrating → Ready may be
modeled with timed automata (Alur and Dill 1994). While
we will not change the foundation of our high-level rea-
soning, i.e., a situation calculus-based framework, we might
consider a Petri-Net-based model such as the one described
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by Ziparo et al. (2011) for the component description as
well.

Constraints
Platform constraints define properties that must always hold
during the execution of the action plan. Based on Figure 1
and using Allen’s interval relations (Allen 1983), we can de-
fine multiple constraints that must hold for the arm:
1. To calibrate the arm, the robot must be at a free location

(i.e., a location without close objects).

free(at(x)) during state(arm) = Calibrating

2. When starting to pick up an object, the arm must be ready
or parked.

state(arm) = Ready meets pickup(x)∨
state(arm) = Parked meets pickup(x)

3. Whenever the robot is moving, the arm must be parked.

state(arm) = Parked during
state(navigation) = Moving

Quantitative Temporal Constraints The examples above
are qualitative temporal constraints. However, some com-
ponents also require quantitative temporal constraints. Con-
sider an RGBD camera that is used for perception. We can
formulate the following constraints about the camera:
1. The camera needs some time to initialize, and therefore

needs to be started one second before it can be used:

state(camera) = Running before≥1s detect(x )

2. On the other hand, image processing is expensive, and
thus should only be turned on if it is actually used within
the next two seconds:

state(camera) ≠ Running unless≤2s detect(x )

The constraints above will be formulated in a temporal ex-
tension of the Situation Calculus and may refer to states
of system components, fluents, and actions. While previous
work only allowed qualititative temporal constraints (Schif-
fer, Wortmann, and Lakemeyer 2010), we want to allow for
quantitative temporal constraints. In order to do so, we will
extend the Situation Calculus based on Reiter (1996) and
Gabaldon (2003) with qualitative and quantitative tempo-
ral aspects and embed the Metric Interval Temporal Logic
(MITL) (Alur, Feder, and Henzinger 1996) into the Situa-
tion Calculus.

Events, Temporal Constraints, and Concurrency
The model of the Katana arm shown in Figure 1 has three
kinds of edges: 1. Action edges that are directly triggered
by the agent and are therefore under agent control, 2. Events
that are triggered by the component itself, e.g. to end a du-
rative action, 3. Exogenous events that are triggered by an
external participant not under the agent’s direct control, e.g.,
a human. Previously, both kinds of events were modeled as
explicit exogenous actions with respective waiting actions.

In our approach, we want to make use of concurrency in
Golog with the waitFor construct (Grosskreutz and Lake-
meyer 2003).

If we want to use the model of a system component to
plan for a certain system configuration, e.g., a calibrated
arm, we need to know about expected events. As an exam-
ple, if the agent decides to start the calibration, it expects
the calibration to finish successfully. If this was not the case,
the agent could not cause state changes of system compo-
nents in a meaningful way, as the outcome of any event tran-
sitions would be unknown. In addition to the information
which transition is to be expected, we also annotate system
events with expected time bounds. This allows the agent not
only to reason about which event will occur, but also when
it will occur. In the Katana example, we annotate the edge
Calibrating → Ready with the expected time bounds [4 , 5],
i.e., we expect the calibration to take at least four and at most
five seconds. This way, the agent knows that it needs to start
the calibration at least five seconds before it can use the arm.

Action Plan Transformation & Constraint
Satisfaction
Given a platform-specific constraint model, an abstract ac-
tion plan can be transformed into a platform-specific ac-
tion plan that satisfies all constraints. To create such a
plan, first the Golog interpreter determines an abstract ac-
tion plan as usual. Next, the constraints are transformed
into constraint networks (Dechter, Meiri, and Pearl 1991;
Meiri 1996). In contrast to Finzi and Pirri (2005), we will not
make use of timelines, but instead restrict our approach to in-
terleaved and possibly true concurrency in order to allow a
simpler formalization. Additionally, our approach will sup-
port quantitative constraints. The resulting constraint net-
work will be evaluated with existing constraint solvers. A
solution of the constraint network will determine the or-
der of events with their interval limits. Platform constraints,
e.g., state(arm) = Ready , must be transformed into ac-
tions by determining a suitable action sequence based on the
platform model. The method of determining this action se-
quence depends on the underlying state machine model. For
a simple state machine as shown in Figure 1, the actions can
be determined by searching for a sequence of transitions that
result in the desired state. For other, more expressive mod-
els, more complex methods may be necessary.

In some cases, such as the calibration of the Katana arm,
inserting a single action may suffice. In other cases, the orig-
inal action plan must be modified, e.g. to actively seek out
localization features before some delicate manipulation task
can be performed. Thus, a clear separation of the abstract
agent and the plan transformation is not always possible and
significant modifications of the original plan may be neces-
sary. For this reason, the transformation of the abstract ac-
tion plan into an executable plan will be part of the high-
level agent and implemented within the Golog interpreter.

Conclusion
We presented a concept for an agent system with an explicit
model of the robotic platform and its constraints. The robotic
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platform is modeled with state automata based on timed au-
tomata and hierarchical state machines and allows multiple
transition types for agent actions, system events, and exoge-
nous events. Based on these models, the user can formu-
late constraints in an extension of the Situation Calculus,
which allows to define platform-specific, quantitative tem-
poral constraints. During execution, the abstract action plan
is modified to satisfy all constraints of the underlying plat-
form. The proposed agent system allows the user to separate
behavior control and platform management while taking into
account that the constraints may require significant changes
to the abstract action plan, which are handled by the agent
system during execution.
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Abstract

People regularly use objects in the environment as tools to
achieve their goals. In this paper we report extensions to the
ICARUS cognitive architecture that let it create and use com-
binations of objects in this manner. These extensions include
the ability to represent virtual objects composed of simpler
ones and to reason about their quantitative features. They also
include revised modules for planning and execution that op-
erate over this hybrid representation, taking into account both
relational structures and numeric attributes. We demonstrate
the extended architecture’s behavior on a number of tasks that
involve tool construction and use, after which we discuss re-
lated research and plans for future work.

Introduction
The ability to create and use complex tools is a distinctive
feature of human cognition. People use objects in their sur-
roundings to help achieve goals, sometimes combining mul-
tiple objects into a new tool that fits their need. This involves
planning but focuses on constructing physical artifacts to
achieve other ends, rather than generating isolated action se-
quences. For example, scenes from a popular television se-
ries, MacGyver, often depicts the protagonist creating tools
from materials that seem unrelated to his objectives. The
character ingeniously uses objects in ways for which they
were not intended, often combining them into a tool for his
purpose. Current AI systems, including our current work, do
not demonstrate such creative abilities.

In this paper, we report progress toward intelligent agents
that exhibit the ability to create and use physical tools. Our
approach extends an existing cognitive architecture to sup-
port this capacity. In the next section, we present a scenario
that illustrates how tool construction and use can help an
agent achieve its goals. Next we briefly review ICARUS, an
architecture for physical agents, and we describe extensions
to its representation and processes that let it create and use
tools. After this, we report runs in a simulated environment,
drawing on the scenario presented earlier, that demonstrate
the revised system’s abilities. We conclude by discussing re-
lated work and plans for future research.

Copyright c⃝ 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A Motivating Scenario
We can clarify the challenge of tool creation and use with a
scenario. Consider a robot that wants to escape from inside a
crumbled building. Its goal is to move from a location inside
the building to another one outside, but between them is a
wide gap in the floor that the robot cannot traverse and an
opening in the wall that is too high for it to reach without
other support. The robot observes some wooden planks of
different lengths and thicknesses. Knowing its own weight
and the maximum height it can climb, it stacks planks across
the gap to build a bridge that will support its weight. The
robot then crosses the bridge and thus traverses the gap. In
a similar fashion, it builds a staircase to the opening on the
wall, goes up the staircase, and escapes from the building.

In this scenario, the robot manipulates objects in its envi-
ronment and assembles them into tools which it then uses
to achieve its goal. To create the right tool, it considers
both structural and numeric factors. Wooden planks laid
over the gap can serve as a basic bridge, but they must be
long enough to cross the gap and strong enough to hold the
robot’s weight. A single plank may appear qualitatively suf-
ficient, but a second plank may be needed to make the bridge
strong enough. For an effective staircase, the building blocks
must be arranged to give enough footing on each step and the
steps should be no higher than the robot can climb.

We can view bridges and staircases as tools that are con-
structed from available components. Computing the load a
bridge must hold or the height of a step requires quantita-
tive reasoning about objects’ positions and dimensions, but
the agent must first devise some qualitative structure that its
numbers describe. We believe the scenario provides a rea-
sonable challenge for testing an intelligent agents’ ability to
create and use tools, as it requires a combination of qualita-
tive and quantitative reasoning.

A Brief Review of ICARUS
ICARUS (Langley, Choi, and Rogers 2009) is a cognitive ar-
chitecture that provides an infrastructure for building intelli-
gent agents that operate in physical settings, simulated or ac-
tual. As with other architectures like Soar (Laird et al. 1986)
and ACT-R (Anderson and Lebiere 1998), it makes com-
mitments about the representation of content, the memories
that store that information, and the processes that manipu-
late it. ICARUS incorporates many ideas from cognitive psy-
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Table 1: Sample ICARUS concepts for the staircase problem.
((on ?o1 ?o2)

:elements ((block ?o1 ∧x ?x1 ∧y ?y1 ∧length ?length1)

(block ?o2 ∧x ?x2 ∧y ?y2 ∧length ?length2
∧height ?height2))

:tests ((*overlapping ?x1 ?length1 ?x2 ?length2)

(= ?y1 (+ ?y2 ?height2))))

((staircase ?o ?o1)

:elements ((block ?o ∧height ?h))

:conditions ((on ?o ?o1)

(staircase ?o1 ?o2)

(step-size ?step))

:tests ((<= ?h ?step)))

chology, but it emphasizes construction of intelligent sys-
tems that carry out complex activities rather than fitting the
results of psychological experiments. In this section, we re-
view the architecture, starting with assumptions for repre-
sentation and memories and then describing its mechanisms
for inference, reactive execution, and problem solving.

Representation and Memories
ICARUS distinguishes between two forms of long-term
knowledge: concepts that underlie inference and procedu-
ral skills that support activity. The framework also sepa-
rates percepts from the environment from beliefs inferred
about them. The former describe observed objects in terms
of their attributes, typically numeric, while the latter take
the form of relational literals like (on A B). This distinc-
tion will figure centrally later in the paper. The conceptual
knowledge base links percepts to beliefs through a set of de-
fined concepts. Each conceptual rule specifies the conditions
that must match to infer a belief of a given type. The condi-
tions of a primitive concept refer only to percepts and their
attribute values, whereas the conditions of a nonprimitive
concept also refer to more basic conceptual predicates.

Table 1 shows some ICARUS concepts that describe re-
lations and situations for the staircase scenario. The first
conceptual rule, for the predicate on, is primitive, as it has
only an :elements field, which describes perceived objects
and their attributes, along with a :tests field that constrains
the matched variables. This concept refers to two block ob-
jects and checks numeric relations between their positions,
lengths, and heights. The second concept, for the predicate
staircase, is nonprimitive, as it refers to other concepts in its
:conditions field. These include the concepts like on, step-
size, and staircase, so the definition is recursive. Thus, con-
cepts are organized into a hierarchy, with more complex
predicates defined in terms of simpler ones.

ICARUS skills build on its conceptual knowledge. Each
skill clause includes generalized percepts, conditions that
must hold for application, and effects that its application
produces. A primitive skill clause refers to some action that
the agent can execute directly in the environment, whereas a
nonprimitive skill clause refers to other, more basic, skills.

Table 2 shows examples of ICARUS skills relevant to the
bridge problem in our scenario. The first skill clause, pick-

Table 2: Sample ICARUS skills for the bridge problem.

((pick-up ?o)

:elements ((robot ?robot)

(block ?o))

:conditions ((clear ?o) (not (holding ?robot ?any)))

:actions ((*pick-up ?robot ?o)))

:effects ((holding ?robot ?o))

((build-bridge ?block ?bottom)

:elements ((block ?block))

:conditions ((bridge ?top ?bottom))

:subskills ((stack ?block ?top))

:effects ((bridge ?block ?bottom))

up, refers to two perceived objects, a robot and a block, and
has two conditions, one positive (for clear) and the other
negative (for holding). This clause is primitive because it
includes the executable action *pick-up. The second skill,
build-bridge, mentions one percept and one conceptual con-
dition, but it is nonprimitive because it includes the subskill
stack. Such references organize skills into a hierarchy in
which primitive clauses serve as terminal nodes, much as
in a hierarchical task network (e.g., Nau et al. 2003).

Cognitive Processes in ICARUS
The architecture utilizes its concepts and skills during pro-
cessing, which operates in four-step cycles. First, ICARUS
deposits percepts from the environment in a perceptual
buffer. The system does not model the extraction of percepts
from sensors, but they serve as plausible outputs of sensory
processing. Second, the architecture combines its concep-
tual knowledge with these percepts to infer beliefs that hold
for the current situation. ICARUS matches primitive concep-
tual clauses against perceived objects to generate low-level
beliefs, then matches nonprimitive concepts against them to
produce higher-level beliefs. For example, the first clause
in Table 1 generates a belief about the on relation when a
block’s y position equals that of another block plus its height
and when the *overlapping test is true.

Once ICARUS has inferred beliefs about the current situ-
ation, an execution stage attempts to find a path downward
through the skill hierarchy that it can carry out in the envi-
ronment. This module starts with a top-level goal, retrieves
a skill clause that should achieve it and has conditions sat-
isfied by current beliefs. If this skill instance is primitive,
the architecture executes its associated action; if not, then it
considers matched subskills. This recursive process returns
a path through the skill hierarchy whose execution should
bring the agent closer to its goal(s). When ICARUS cannot
find such an applicable path, it invokes a problem-solving
module that carries out search for sequences of skills which
achieve the current goals. Execution and problem solving
are tightly interleaved, with the system carrying out selected
skill instances when applicable and resorting to problem
solving when it encounters an impasse.

We should note that, although ICARUS grounds its con-
cepts and skills in quantitative percepts and actions, the in-
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Table 3: An ICARUS concept that illustrates the extended
numeric representation.

((bridge ?b ?g ?leftend ?rightend)

:elements ((block ?b ∧x ?leftend ∧length ?ln)

(gap ?g ∧left ?gl ∧right ?gr))

:attributes (?left is (- ?gl 1)

?right is (+ ?gr 1)

?rightend is (+ ?leftend ?ln))

:tests ((<= ?leftend ?left)

(>= ?rightend ?right)))

ference, execution, and problem-solving modules primar-
ily produce qualitative and relational structures. This does
not keep the architecture from operating in continuous do-
mains like simulated urban driving (Langley et al. 2009;
Choi 2011), but we will see that it raises challenges for the
construction and use of complex tools.

Numeric Representation and Processing
As noted earlier, reasoning about tools often requires that an
agent operate over not only qualitative aspects of the envi-
ronment, but also its quantitative properties. In this section,
we discuss two extensions to ICARUS that let the architec-
ture support numeric processing, the first involving repre-
sentation and the second concerning planning.

Representational Extensions
ICARUS receives and processes perceptual elements that in-
clude types, names, and attribute-value pairs for objects in
the world. The original system can represent symbolic rela-
tions among objects and concepts can include simple tests
on numeric attributes. But it cannot reason about numeric
relations or specify arithmetic computations and associate
their results with a new variable. In previous research, this
limitation has caused problems when using ICARUS to con-
trol physical robots, where the continuous domain requires
encoding of numeric constraints. Naturally, this issue also
arises in tool creation and use. To address the problem,
we extended the conceptual formalism to specify arithmetic
combinations of numeric attributes and associate them with
new variables that can appear elsewhere in the concept.

Table 3 shows a sample concept that uses this extended
notation. The clause includes a new field, :attributes, that
specifies desired numeric calculations and their variable as-
signments. This specific clause states that the position of a
block’s right side (denoted by the variable ?rightend) can be
computed from its left side position, ?leftend, and its length,
?ln. The concept also specifies how to compute the left and
right positions, ?left and ?right, for a spatial gap with one
unit margins at both ends. These values are also used, along
with the left and right ends, in two inequality tests.

This extension lets ICARUS specify numeric calculations
and how to reuse their results elsewhere in a conceptual
clause, complementing the qualitative structures it could al-
ready express. However, this only describes the environ-

Table 4: An ICARUS skill for creating a bridge that illustrates
the extended numeric formalism.
((fill-gap-center ?b ?g)

:elements ((block ?b ∧x ?x0 ∧length ?l ∧weight ?w)

(robot ?robot ∧weight ?weight
∧status ?status ∧holding ?b)

(gap ?g ∧left ?gl ∧right ?gr))

:actions ((*fill-gap-center ?robot ?b ?gl ?gr))

:effects ((bridge ?b ?g ?x0 (+ ?x0 ?l))

(block ?b ∧x (/ (- (+ ?gl ?gr) ?l) 2) ∧y 0
∧len ?l ∧weight ?w)

(robot ?robot ∧weight (- ?weight ?w)
∧status ?status ∧holding nothing)))

mental situation, not how agent’s actions will alter it. In re-
sponse, we also extended the notation for skills to incorpo-
rate details about quantitative effects of their execution.

Table 4 shows a skill that takes advantage of this exten-
sion. The main change is in the :effects field, which de-
scribes the outcome of a skill’s successful execution. Pre-
viously, this field could only include symbolic effects about
relational beliefs that would become true or false after appli-
cation. In the new notation, the field can describe expected
changes not only in symbol structures, but also in the nu-
meric attributes of objects. The skill will not only cause
the symbolic relation (bridge . . . ) to become true, but also
change the block’s x position to the value of the expression,
(/ (- (+ ?gl ?gr) ?l) 2), and reduce the robot’s weight by ?w.

Extensions to Processing
The original architecture could match against numeric at-
tributes of perceived objects, but it could neither perform
mathematical calculations over these numbers nor allow the
results in concept heads. The representational changes to
concepts and skills remedies these limitations, but taking ad-
vantage of them also required us to augment ICARUS’s in-
formation processing along two fronts. The first deals with
inference, which now calculates the values of arithmetic ex-
pressions in concepts and binds them to specified variables
that may appear in the heads. These numeric values, in turn,
can influence inference of symbolic beliefs at higher levels,
as they are carried upward through the hierarchy during the
conceptual inference process.

These changes to the formalism require no alteration of
the execution module, but they do necessitate changes to
problem solving. In response, the revised module computes
not only symbolic relations during its mental execution of
skills but also numeric values associated with them. The new
problem solver utilizes forward chaining, which lets the sys-
tem update numeric attributes of an object, add new literals,
or delete existing literals from the state using information
encoded in skills’ :effects field. Such mental execution has
direct effects on the projected state, but indirect changes can
also occur, which the architecture determines by invoking
the inference module. As a result, the problem solver can
generate plans that satisfy both symbolic and numeric re-
quirements specified in the agent’s goals.
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Encoding and Processing Virtual Objects
Despite its new ability to reason about quantitative aspects
of the environment, the extended ICARUS still cannot rec-
ognize an existing object as a potential tool or reason about
how to create one from available elements. This is because
the architecture only recognizes primitive objects as dis-
tinct entities, not combinations of them. In contrast, peo-
ple readily view composite structures as objects themselves,
describe numeric features associated with them, and reason
about them as unified entities. To create and utilize complex
tools, ICARUS needs the ability to reify and process such
virtual objects in its environment.

Representational Extensions
The ability to include numeric attributes in concept heads
paves the way to handling virtual objects. Without this ex-
tension, the architecture can infer beliefs only as symbolic
literals, which makes them different from perceived objects
in that they lack numeric attributes. Previously, for exam-
ple, a bridge concept that describes a composite object could
only produce a symbolic belief that informs the agent about
its existence. In contrast, the new version can calculate the
values for numeric attribute associated with the bridge en-
tity, such as its thickness and weight limit.

However, computing such numeric attributes is not
enough. We also need some way to associate them with the
virtual object, which requires giving it a symbolic identifier
in the same manner as percepts. This extension effectively
eliminates the distinction in the original ICARUS between
beliefs and percepts, so the new architecture stores them in a
single working memory. The only remaining differences are
that percepts come directly from an external environment,
while beliefs are inferred, and that beliefs include a sym-
bolic relation, while percepts lack them. Of course, we can
apply this idea recursively to specify higher-level virtual ob-
jects in terms of lower-level ones.

For example, the two conceptual clauses for bridge that
appear in Table 5 not only describe the class of situations
in which one or more blocks cover a gap, but also specify
a new virtual object that denotes the bridge. This composite
object has its own attributes, such as its left position, right
position, and weight, the values of which are calculated from
the attribute values of its component objects.

Implications for Processing
Once the extended ICARUS has created virtual objects, it can
use them as if they were objects perceived directly in the
environment. The second, recursive, clause for bridge con-
cept shown in Table 5 lets the system recognize situations in
which a block is stacked on a bridge and generate another
virtual object that is also a bridge, but one with a higher
weight limit than the original one.

As the table shows, the new notation also changes the
syntax for the :elements field. Here the expression A is
B states that one should associate an identifier A with B,
which may be a percept or a relational belief. Recall that
percepts enter the perceptual buffer with such identifiers, but

Table 5: Some ICARUS concepts that specify virtual objects.

((bridge ?b ∧gap ?gl ∧left ?l ∧top-left ?tl
∧top-right ?tr ∧right ?r ∧weight ?weight)

:elements (?b is (block ?b ∧x ?tl ∧y 0 ∧len ?len
∧weight ?weight)

?gl is (gap ?gl ?gr))

:tests ((<= ?tl (- ?gl 1))

(>= (+ ?tl ?len) (+ ?gr 1)))

:attributes (?l is ?tl

?tr is (+ ?tl ?len)

?r is (+ ?tl ?len)))

((bridge ?b ∧gap ?gl ∧left ?l ∧top-left ?tl
∧top-right ?tr ∧right ?r ∧weight ?weight)

:elements (?b is (block ?b ∧x ?tl ∧y ?y ∧len ?len
∧weight ?w)

?b1 is (bridge ?b1 ∧gap ?gl ∧left ?l
∧top-left ?tl1 ∧top-right ?tr1
∧right ?r ∧weight ?w1)

?b1 is (block ?b1 ∧x ?tl1 ∧y ?y1
∧len ?len1 ∧weight ?w2)

?gl is (gap ?gl ?gr))

:tests ((<= ?tl (- ?gl 1))

(>= (+ ?tl ?len) (+ ?gr 1))

(= (+ ?y1 1) ?y)

(<= (+ ?tl1 1) ?tl)

(<= (+ ?tl ?len 1) ?tr1))

:attributes (?weight is (+ ?w ?w1)

?tr is (+ ?tl ?len)))

that ICARUS must name its beliefs before it can associate nu-
meric attributes with them. The extended architecture retains
the identifiers for these virtual objects in working memory,
so they can appear as arguments in higher-level beliefs that
result from conceptual inference.

What we have described suffices for ICARUS to draw in-
ferences about composite objects, but not to use them for
driving agent activity. Of course, virtual objects can also ap-
pear in the effects field of skills, which means that the prob-
lem solver can form expectations about their creation or de-
struction upon execution. This means, for example, that the
agent can use its hierarchical skills to form plans that involve
constructing composite objects which enable later steps that
achieve its goals. But it can also use search to generate plans
entirely from primitive skills and, by invoking the inference
process, deduce that an action sequence has the side effect
of creating a complex virtual object that it can use as a tool.

Demonstrations of the Extended Architecture
To confirm that the extended system behaves as intended,
we carried out demonstration runs on the scenario described
earlier. Here an ICARUS agent controls a simulated mobile
robot to reach its destination. In one case, there is a chasm
between the initial and the goal location; in another prob-
lem, the goal is at a higher location than the robot can reach
directly. In both cases, the agent can use blocks of different
sizes to build a bridge or staircase, which it can then use.
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Figure 1: Initial and final states for one version of the bridge
problem. The robot, R0, starts on the lefthand side and must
use blocks to build a bridge over the gap, G1, to reach its
goal on the righthand side.

Simplifying Assumptions
The primary aim of these demonstration runs was to show
that the extensions to ICARUS, described earlier, support the
creation and use of tools. For this reason, we introduced four
simplifying assumptions that made the planning and execu-
tion tasks somewhat easier than they would be in a realistic
simulation:

• Although ICARUS allows durative skills that require re-
peated application to achieve their effects, in the runs all
skills produce results in one step;

• The 2D simulated environments let agents pick up and
stack objects without first needing to approach them or to
move around obstacles;

• Agents must use planning to find a sequence of skills that
construct composite objects that can serve as tools, but
skills for using them operate in one step; and

• We provided agents with hierachical concepts for tools
that appear as conditions on these tool-using skills, effec-
tively serving as affordances (Zech et al. 2017).

Ideally, future demonstrations should use more realistic sim-
lated environments that eliminate these assumptions. Never-
theless, the reported runs offer clear proof of concept that the
extended architecture can represent, reason about, construct,
and use tools to achieve goals in continuous settings.

Creating and Traversing a Bridge
In the first setting, the robot must build a bridge to cross the
chasm, using long wooden blocks of different lengths and
strengths. The agent knows that, for the robot to traverse the
bridge safely, it must: (1) cover the chasm by a margin of at
least a foot at each end; (2) withstand the robot’s weight and
any payloads; and (3) if it is made from stacked blocks, in-
clude a staircase at each end with steps no higher than a foot
and at least a foot wide. The agent has no skill that directly
creates a bridge, so it must use problem solving to find some
plan to build one that satisfies these requirements. The sys-
tem must then execute this plan, building the bridge in the
environment and crossing the chasm to reach its destination.

For this problem, we gave ICARUS four concepts and four
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Figure 2: Initial and final states for one version of the stair-
case construction and climbing problem.

primitive skills, including the ones shown in Tables 4 and 5.
Using this knowledge, the agent can recognize situations in
which a block is stacked on another, detect a bridge com-
posed of blocks, pick up a block to either stack it on another
or cover a chasm, and finally cross the bridge when it is com-
plete. Figure 1 shows an initial state in which the robot per-
ceives itself, a chasm, and four blocks that are two, four, six,
and eight units in length and that have weight limits of one,
five, one, and two, respectively. Block B1 is on block B0 and
block B2 is on block B3.

Given these initial and goal states, the problem solver uses
forward-chaining search to find a plan that achieve its goal
in nine steps. During this process, ICARUS first considers a
bridge that only withstands a weight of two units, which is
insufficient for the robot to cross. Next the system considers
stacking a second block on the first to create a bridge with
the maximum load of three units. This is still not sufficient,
so it stacks yet another block, making a bridge that is strong
enough for it to cross the chasm safely.

Once it has found this plan, the ICARUS agent executes
it in the simulated environment over 29 cycles, first picking
up B2 to clear B3 and stacking B2 on B1. Next the system
picks up the longest block B3 and covers the gap with it.
Then the robot picks up another block, B2, and stacks it on
B3 to create a stronger bridge, after which it stacks B1 on
the result to make it even stronger. At this point, the robot
traverses the reinforced bridge to reach its goal.

We ran the extended architecture on 20 similar problems
that involved four blocks of random lengths and weight lim-
its. The system executed plans that had the average duration
of 29.6 cycles with a standard deviation of 10.7 cycles. We
also ran it, with the same knowledge, on a slightly differ-
ent goal description in which the robot must carry a certain
block as its payload across the chasm. In this altered sce-
nario, the ICARUS agent generated a similar plan, this time
requiring that it construct an even stronger bridge, then pick
up the payload for delivery. Again, the robot executed this
plan in the simulated world to achieve its goal.

Constructing and Climbing a Staircase

In the second scenario, the robot must escape from a room in
which the exit is higher on the wall than it can reach without
assistance. The environment contains long wooden blocks of
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different lengths that the agent can use to build a staircase for
reaching the exit. The system knows that a staircase must:
(1) have steps that are no taller than a foot for the robot to
climb successfully and at least a foot wide so it can step on
them safely; (2) be no further than a foot from the wall at
its highest point; and (3) have a height that is within a foot
of the exit’s height. The robot must build a staircase that
satisfies all these requirements before it can ascend and exit
the room.

For this problem, we provided ICARUS with seven con-
cepts and four primitive skills. The robot could use this
knowledge to recognize situations in which one block is on
top of another, categorize a virtual object as a staircase, pick
up a block to either stack it on another or place it on the
ground, and leave the room when it reaches the exit. Fig-
ure 2 shows one example of this scenario in which the robot
perceives itself, the wall, and five blocks with lengths of 1.5,
1.5, 3, 4.5, and 1, respectively, and with heights of one unit.

The problem solver uses forward search to generate a plan
that, in 13 steps, achieves the exit goal. During planning,
ICARUS mentally constructs a staircase from three blocks
that will let it leave the room, but only after considering
shorter stairways. Once it has found this plan, the robotic
agent executes it in the simulated environment, which takes
41 cognitive cycles. This involves picking up block B4 to
clear the area around the wall and stacking it on block B1.
The agent then picks up block B2 to clear B3 and stacks B2
on B4. The robot continues stacking the blocks B3, B2, and
B4, in that order. At this point, it recognizes that it has built
an acceptable staircase, so the robot climbs the stairs and
exits the room, achieving its goal.

As another demonstration run, we used a variation on this
problem that required the system to combine a number of
shorter blocks to form steps for the staircase. This involved
generating a more complex plan with additional steps that
led to more virtual objects, greater search during planning,
and longer execution times than in the first run, but the sys-
tem handled them without any special difficulty.

In summary, the runs have demonstrated that the ex-
tended architecture can represent and reason about numeric
attributes and virtual objects during inference, problem solv-
ing, and execution. This lets the revised ICARUS infer be-
liefs that incorporate numeric attributes, associate them with
composite entities that its actions produce, and use this con-
tent to generate and carry out plans that achieve symbolic
goals subject to numeric constraints. Together, these abilities
support the construction of tools, such as bridges and stair-
cases, from available components and their use once built.

Related Research
The extensions to ICARUS that let it create and use tools
have clear precedents that merit discussion. We focus here
on two contributions that we consider most important – rea-
soning over numeric attributes and using virtual objects. We
have discussed the architecture’s forward-chaining planning
module elsewhere (To et al. 2015). We will not repeat our
observations here except to note that it can use primitive
skills, hierarchical ones, and their combination to generate
plans, although the first option requires more search.

Research in cognitive architectures (Langley, Laird, and
Rogers 2009) has emphasized symbolic representation and
processing, due to their focus on high-level cognitive tasks.
Nevertheless, well-established frameworks like Soar and
ACT-R adopt an attribute-value notation that can easily en-
code the types of numeric object-based inputs we assume in
both working memory and production rules. Both architec-
tures have been used to control robotic agents, which cer-
tainly requires quantitative processing. However, they treat
numeric manipulation as a special case of symbol process-
ing, rather than giving them equal status, at the architecture
level, as does the extended version of ICARUS.

Other paradigms also support a combination of symbolic
and numeric processing. For example, logic programming
emphasizes symbolic notations but can incorporate quanti-
tative values and constraints, although they do not typically
operate over time, as do ICARUS agents. AI planning sys-
tems also focus on symbolic tasks but have been adapted
to include numeric content (e.g., Coles et al. 2012). These
describe activity over time, but work in this tradition sel-
dom supports the storage and use of hierarchical skills. Most
robotic systems emphasize low-level numeric processing to
the exclusion on high-level cognition. Hybrids like the 3T ar-
chitecture (Bonasso et al. 1997) support both, but they adopt
separate, specialized notations rather than offering a uni-
fied framework for cognition and action. Perhaps the closest
robotics work (Levihn and Stilman 2014; Erdogan and Stil-
man 2014), also concerned with tool creation, propagates
physical constraints to ensure a symbolic planner considers
only acceptable configurations of objects.1

As for the virtual objects, most production-system archi-
tectures (e.g., Klahr, Langley, and Neches 1987) support
rules that introduce new symbols, with associated attribute
values, in elements they add to working memory. However,
they do not elevate their creation to the architectural level
or make theoretical claims about the way such objects are
defined, processed, and used by other mechanisms. Our ex-
tended framework associates virtual objects with concept in-
stances that reside in belief memory, so that any conceptual
rule in long-term memory can generate them during the in-
ference process. This allows a tight integration with other
components of the ICARUS architecture.

Otherwise, the paradigm most relevant to our use of vir-
tual objects is scene understanding (e.g., Antanas et al.
2012), which attempts to infer models of the environment
from images or videos. Classical approaches construct a hi-
erarchy of entities, from edges to angles to surfaces to 3D
object models (Binford 1982). ICARUS’ virtual objects are
directly analogous to these intermediate entities, and its cal-
culation of derived attribute values maps directly on compu-
tations of angles and volumes in vision systems. However,
work in this paradigm has focused on scene interpretation,
not with goal-directed activity. Thus, although such systems
might be able to describe and recognize tools like bridges
and stairs, they cannot use them to achieve objectives.

1Brown and Sammut (2012) report a novel approach to learning
tool usage by the analysis of training cases, but their research has
different aims than our own.
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Plans for Future Work
We have shown that the extended ICARUS can represent and
reason about tools, it can construct such tools from avail-
able objects, and it can then use them to achieve its goals.
Nevertheless, we must still address a number of challenges
that our work to date has left unexamined. The most obvious
limitations involve the system’s dependence on handcrafted
knowledge about composite tools.

ICARUS already includes mechanisms for learning hierar-
chical skills from successful problem solving (Langley et al.
2009), and we can use this ability to acquire structures for
constructing bridges, staircases, and similar artifacts, as well
as ones for using them after they have been created. The lat-
ter will be useful in more realistic environments that require
sequences of actions for tool use, such as taking repeated
steps up a staircase. These mechanisms acquire new skills
from individual solutions obtained through search, so learn-
ing can be very rapid.

A more challenging hurdle involves the acquisition of
concepts that recognize composite tools. Here we plan to
draw on another extension to ICARUS (Li et al. 2012) that,
when it uses a problem solution to create a new skill, also
defines a new conceptual predicate that describes the condi-
tions under which that skill will achieve the relevant goals.
These conceptual rules may be disjunctive or even recur-
sive, so the mechanism should be able to produce concepts
for recognizing bridges, staircases, and other tools that may
have arbitrary numbers of components.

However, we can best take advantage of this ability by
separating the issues of tool construction and tool use. If we
present an ICARUS agent with a problem that it can solve
with an existing configuration of objects, say two blocks that
cover a gap, it could learn both a hierarchical skill for us-
ing that configuration and a concept that recognizes similar
‘bridge’ configurations in the future. Given such knowledge,
it could then solve, and learn from, new problems that re-
quire the construction of a bridge before its traversal. This
decomposition is not strictly necessary, but inventing the
bridge concept from scratch would require more search than
determining how to build one after having used another.

These are certainly not the only challenges that remain be-
fore we have a mature account of tool construction and use.
For instance, numeric simulation of durative operators, as
in Langley et al.’s (2016) PUG architecture, seems relevant
to determining whether an agent can use a tool to achieve
its goals. The ability to interleave planning, execution, and
monitoring is also important in settings where tools are not
fully reliable. However, the creation and use of tools is one
of the distinguishing features of human intelligence, so we
should not be surprised that many open problems remain.

Concluding Remarks
In this paper, we reported extensions to the ICARUS archi-
tecture that support the creation and use of tools. These in-
cluded the ability to associate numeric attributes with con-
cepts and skills, as well as calculate their values during in-
ference, execution, and problem solving. Another augmen-
tation let conceptual rules refer to new, complex objects that

were composed from existing ones and to derive values for
their numeric attributes during the process of conceptual in-
ference. Together, these capabilities let the extended archi-
tecture not only represent and reason about tools it creates
from components available in the environment, but also use
those tools to achieve its goals.

We demonstrated this new functionality in two simulated
environments, one that involved creating and traversing a
bridge and another that required constructing and climbing
a staircase. We will not claim that other approaches, such as
AI planning methods, cannot handle the same tasks, but they
would not represent or recognize the fact that tools played a
key role in their solutions. Humans clearly exhibit this abil-
ity, and we believe that ICARUS’ approach to tool creation
and use has many similarities. Nevertheless, we have taken
only the first steps, and future work should include demon-
strations in more realistic environments and use of learning
mechanisms to acquire tool-related concepts and skills.
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Abstract

Intelligent robots frequently need to explore the objects in
their working environments. Modern sensors have enabled
robots to learn object properties via perception of multiple
modalities. However, object exploration in the real world
poses a challenging trade-off between information gains and
exploration action costs. Mixed observability Markov deci-
sion process (MOMDP) is a framework for planning un-
der uncertainty, while accounting for both fully and partially
observable components of the state. Robot perception fre-
quently has to face such mixed observability. This work en-
ables a robot equipped with an arm to dynamically construct
query-oriented MOMDPs for object exploration. The robot’s
behavioral policy is learned from two datasets collected using
real robots. Our approach enables a robot to explore object
properties in a way that is significantly faster while improv-
ing accuracies in comparison to existing methods that rely on
hand-coded exploration strategies.

1 Introduction
Service robots are increasingly present in everyday environ-
ments, such as homes, offices, airports, and hospitals, where
a common task is to retrieve an object for a user. Consider
the request, “Please fetch me the red, empty bottle.” A key
problem for the robot is to decide whether a particular can-
didate object matches the properties in the query. For cer-
tain words (e.g., heavy, soft, etc.), visual classification of
the object is insufficient as the robot would need to per-
form an action (e.g., lift the object to determine whether it is
heavy or not). Multi-modal perception research has focused
on combining information arising from such multiple sen-
sory modalities.

Given multi-modal perception capabilities, a robot needs
to decide which actions (possibly out of many) to perform
on an object, i.e., generate a behavioral policy for a given
request. For instance, to obtain an object’s color, a robot
simply needs to adjust the pose of its camera, whereas sens-
ing the content of a container requires two actions: grasp-
ing and shaking. The robot needs to select actions in such
a way that the information gain about object properties is
maximized while the cost of actions is minimized. It should
be noted that the robot needs to use sequential reasoning in

Copyright c⃝ 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this action selection process, e.g., a shaking action would
make sense only if a grasping action has been (successfully)
executed. Also, robot perception capabilities are imperfect,
so the robot sometimes needs to take the same action more
than once. Probabilistic planning algorithms aim at comput-
ing action policies to help select actions toward maximiz-
ing long-term utility (information gain in our case), while
considering the uncertainty in non-deterministic action out-
comes.

Markov decision processes (MDPs) (Puterman 1994) and
partially observable MDPs (POMDPs) (Kaelbling, Littman,
and Cassandra 1998) enable an agent to plan under uncer-
tainty with full and partial observability respectively. How-
ever, the observability of real-world domains is frequently
mixed: some components of the current state can be fully ob-
servable while others are not. A mixed observability Markov
decision process (MOMDP) is a special form of POMDP
that accounts for both fully and partially observable compo-
nents of the state (Ong et al. 2010). In this work, we model
robot multi-modal perception problems using MOMDPs be-
cause of the mixed observability of the world that the robot
interacts with (e.g., whether an object is in hand or not is
fully observable, but object properties such as color and
weight are not). Referring to our model as a MOMDP (as
opposed to a POMDP) is not of practical importance in this
paper. It is mainly for ease of describing the domain.

Robot behavioral exploration policies are learned from
the experience of a robot interacting with objects in the
real world. We use datasets that include tens of objects
and nearly one hundred properties. In such domains, it fre-
quently takes a prohibitively long time to compute effective
behavioral exploration policies. To tackle this issue, we dy-
namically construct MOMDP-based controllers to model a
minimum set of domain variables that are relevant to cur-
rent user queries (e.g. “red, empty bottle”). This strategy
ensures a small state set and enables us to generate high-
quality robot action policies in a reasonable time (e.g., ≤ 2
seconds). Our experiments show that the policies of the con-
structed controllers improve recognition accuracy and re-
duce exploration cost when compared to baseline strategies
that deterministically or randomly use predefined sequences
of actions.
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2 Related Work
Recent research in robotics has shown that robots can learn
to classify objects using computer vision methods as well
as non-visual perception coupled with actions performed on
the objects (Högman, Björkman, and Kragic 2013; Sinapov
et al. 2014; Thomason et al. 2016). For example, a robot can
learn to determine whether a container is full or not based on
the sounds produced when shaking the container (Sinapov
and Stoytchev 2009); or learn whether an object is soft or
hard based on the haptic sensations produced when pressing
it (Chu et al. 2015). Past work has shown that robots can
associate (or ground) these sensory perceptions with human
language predicates in vision space (Alomari et al. 2017;
Whitney et al. 2016; Krishnamurthy and Kollar 2013; Ma-
tuszek et al. 2012) and joint visual and haptic spaces (Gao et
al. 2016).

Nevertheless, there has been relatively little emphasis on
enabling a robot to efficiently select actions at test time
when it is tasked with classifying a new object. The few ap-
proaches for tackling action selection, e.g., (Rebguns, Ford,
and Fasel 2011; Fishel and Loeb 2012; Sinapov et al. 2014),
assume that only one target property needs to be identified
(e.g., the object’s identity in the case of object recognition).
In contrast, we address the problem where a robot needs to
recognize multiple properties about an object, e.g., “is the
object a red empty bottle?”.

Sequential decision-making frameworks, such as MDPs,
POMDPs and MOMDPs, can be used for probabilistic plan-
ning toward achieving long-term goals, while accounting for
non-deterministic action outcomes and different observabil-
ities (Kaelbling, Littman, and Cassandra 1998; Ong et al.
2010). As a result, these frameworks have been applied to
object exploration in robotics. For instance, POMDPs were
used for suggesting visual operators and regions of interests
for exploring multiple objects on a tabletop scenario (Srid-
haran, Wyatt, and Dearden 2010), and more recent work
used a robotic arm to move objects enabling better visual
analysis (Pajarinen and Kyrki 2015). However, interaction
with objects in these lines of research relies heavily on robot
vision while other sensing modalities, such as audio and
haptics, are not considered.

Behavioral policies of multi-modal object exploration
have been learned in simulation using deep reinforcement
learning methods (Denil et al. 2017), where force was di-
rectly used in the interactions with objects. The simulation
environment used in that work makes it possible to run large
numbers of trials, but limits its applicability on real robots.

3 Theoretical Framework
Next, we describe the theoretical framework used by the
robot to learn predicate recognition models and generate ef-
ficient policies when tasked with identifying whether a set
of predicates hold true for a new object.

3.1 Multi-Modal Predicate Learning
In this work, the robot learns predicate recognition mod-
els using the methodology described in (Sinapov, Schenck,

and Stoytchev 2014; Thomason et al. 2016), briefly sum-
marized here. In this methodology, the robot uses behaviors
(e.g., look, grasp, lift) coupled with sensory modalities (e.g.,
color, haptics, audio) to identify whether a predicate (i.e., a
word that a human may use to describe an object) holds true
for an object.

Let P be the set of predicates, let B be the set of be-
haviors (i.e., actions), and let C be the set of sensorimotor
contexts, where each context c ∈ C corresponds to a combi-
nation of a behavior and sensory modality (e.g., look-color,
lift-haptics). For each predicate p, and context c, the robot
learns a classifier using data points [xc

i ,yi], where xc
i is the

ith observation feature vector in context c, and yi = true if
the predicate p holds true for the object in trial i, and f alse
otherwise.

Let Cb ⊂ C be the set of sensorimotor contexts associated
with behavior b ∈ B. When executing action b, the robot
queries the classifiers associated with contexts Cb and com-
bines their outputs to estimate a score (normalized in the
range of 0.0 to 1.0) for each predicate p ∈P . In other words,
each behavior acts as a classifier itself. At the end of the
training stage, the robot performs internal cross-validation
and stores the confusion matrix Cb

p ∈ R2×2 for predicate p
and behavior b. Next, we describe the problem of generating
an action policy when identifying whether a set of predicates
hold true for an object that was not present during training.

3.2 MOMDP-based Controllers
Behaviors (or actions1), such as look and drop, have dif-
ferent costs and different accuracies in predicate recogni-
tion. At each step, the robot has to decide whether more
exploration behaviors are needed, and, if so, select the ex-
ploration behavior that produces the most information. In
order to sequence these behaviors toward maximizing infor-
mation gain, subject to the cost of each behavior (e.g., the
time it takes to execute it), it is necessary to further con-
sider preconditions and non-deterministic outcomes of the
actions. For instance, shaking and dropping actions make
sense only if a preceding grasping action succeeds; and, in
practice, grasping actions are unreliable and succeed with
probability.

In this work, we assume action outcomes are fully ob-
servable and object properties are not. For instance, a robot
can reliably sense whether a grasping action is success-
ful, but it cannot reliably sense the color of a bottle or
whether that bottle is full. Due to this mixed observability
and unreliable action outcomes, we use mixed observability
MDPs (MOMDPs) (Ong et al. 2010) to model the sequential
decision-making problem for object exploration. We next
present how we formalize our object exploration problem
within the MOMDP framework.

A MOMDP is fundamentally a factored POMDP with
mixed state variables. The fully observable state components
are represented as a single state variable x (in our case, the
robot-object status, e.g., the object is in hand or not), while
the partially observable components are represented as state

1The terms of “behavior” and “action” are used interchangeably
in this paper.
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Figure 1: A simplified version of the transition diagram in
space X for object exploration. This figure only shows the
probabilistic transitions led by exploration actions. Report
actions that deterministically lead transitions from xi ∈X to
the term state are not included.

variable y (in our case, the object properties, e.g., the object
is heavy or not). As a result, (x,y) specifies the complete
system state, and the state space is factored as S = X ×Y ,
where X is the space for fully observable variables and Y is
the space for partially observable variables.

Formally, a MOMDP model is specified as a tuple,

(X , Y, A, TX , TY , R, Z, O, γ),

where A is the action set, TX and TY are the transition
functions for fully and partially observable variables respec-
tively, R is the reward function, Z is the observation set, O
is the observation function, and γ is the discount factor.

The definitions of A, R, Z, O, and γ of a MOMDP are
identical to these of POMDPs (Kaelbling, Littman, and Cas-
sandra 1998), except that Z and O are only applicable to Y ,
the partially observable components of the state space. γ is
the discount factor that specifies the planning horizon. We
formalize our object exploration problem as a MOMDP (as
a special form of POMDP) mainly for ease of describing the
fully and partially observable variables in our domain.

Next, we present how each component of our MOMDP
model is specified for our object exploration problem.

3.3 State Space Specification
The state space of our MOMDP-based controllers has two
components of X and Y . The global state space S includes a
Cartesian product of X and Y ,

S = {(x,y) | x ∈ X and y ∈ Y}

X is the state set specified by fully observable do-
main variables. In our case, X includes a set of six states
{x0, · · · ,x5}, as shown in Figure 1, and a terminal state
term ∈ X that identifies the end of an episode. x ∈ X is
fully observable, and the robot knows the current state of
the robot-object system, e.g., whether grasping and dropping
actions are successful or not.

Y is the state set specified by partially observable domain
variables. In our case, these variables correspond to N object
properties that are queried about, {v0, v1, · · · , vN−1}, where
the value of vi is either true or false. Thus, |Y| = 2N .

For instance, given an object description that includes
three properties (e.g., “a red empty bottle”), Y includes

grasp (22.0s) lift (11.1s) lower (10.6s)

drop (9.8s) push (22.0s) press (22.0s)

Figure 2: The behaviors, and their durations in seconds
(behaviors are from the Thomason16 dataset detailed in
Sec. 4). In addition, the hold (1.0s) behavior was performed
by holding the object in place. The look (0.5s) behavior was
also performed by taking a visual snapshot of the object us-
ing the robot’s sensors prior to exploration.

23 = 8 states. Since y ∈ Y is partially observable, it needs
to be estimated through observations. It should be noted that
there is no state transition in the space of Y , as we assume
object properties do not change over the course of robot ac-
tion.

3.4 Actions and Transition System
We present the transition system of our MOMDP-based con-
trollers by first introducing the action set and then the tran-
sition probabilities. A : Ae ∪Ar is the action set. Ae includes
the object exploration actions pulled from the literature of
robot exploration, as shown in Figure 1, and Ar includes the
reporting actions used for object property identification.

Exploration actions: Figure 1 shows all exploration ac-
tions except for action ask that is allowed in any state x ∈X .
Among the actions, tap, poke, and shake are only available
in the dataset of (Sinapov, Schenck, and Stoytchev 2014)
and hold is only available in the dataset of (Thomason et
al. 2016). As one of the main contributions, our approach
enables a robot to automatically figure out what actions are
useful given a user query by learning from the datasets. Pic-
tures of a robot executing some of the exploration actions
are shown in Figure 2.

Reporting actions: Ar includes a set of actions that are
used for reporting the object’s properties and can determin-
istically lead the state transition to term (terminal state). For
instance, if a user queries about “a blue, heavy can”, there
will be three binary variables specifying each of properties
is true or false. As a result, there will be eight reporting ac-
tions. For a ∈ Ar, we use s⊙ a (or y⊙ a) to represent that the
report of a matches the underlying values of object proper-
ties (i.e., a correct report) and use s⊘ a (or y⊘ a) otherwise.
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TX : X × A × X → [0,1] is the state transition func-
tion in the fully observable component of the current state.
TX includes a set of conditional probabilities of transitions
from x ∈ X—the fully observable component of the current
state—to x′ ∈X , the component of the next state, given a∈A
the current action. Reporting actions and illegal exploration
actions (e.g., dropping an object in state x1—before a suc-
cessful grasp) lead state transitions to term with 1.0 proba-
bility.

Most exploration actions are unreliable and succeed prob-
abilistically. For instance, p(x4, drop, x5) = 0.95 in our
case, indicating there is small probability the object is stuck
in the robot’s hand. The success rate of action look is 1.0 in
our case, since without changing positions of either the cam-
era or the object it does not make sense to keep running the
same vision algorithms and hence it is not allowed.

TY : Y ×A×Y → [0,1] is the state transition function in
the partially observable component of the current state. It is
an identity matrix in our case, (we assume) because object
properties do not change during the process of the robot’s
exploration actions.

3.5 Reward Function and Discount Factor
R : S×A → R is the reward function. Each exploration ac-
tion, ae ∈ Ae, has a cost that is determined by the time re-
quired to complete the action. These costs are empirically
assigned according to the datasets used in this research. The
costs of reporting actions depend on whether the report is
correct.

R(s,a) =
{

r−, if s ∈ S, a ∈ Ar, s⊘ a
r+ , if s ∈ S, a ∈ Ar, s⊙ a

where r− (or r+ ) is negative (or positive) given an incorrect
(or correct) report. Unless otherwise specified, r− = −500
and r+ = 500 in this paper.

Costs of other exploration actions are within the range
of [0.5,22.0] (corresponding reward is negative), except that
action ask has the cost of 100.0. γ is a discount factor, and
γ = 0.99 in our case. This setting gives the robot a relatively
long planning horizon.

3.6 Observations and Observation Function
Z : Zh ∪ /0 is a set of observations. Elements in Zh include
all possible combinations of object properties and have one-
one correspondence to elements in Ar and Y . For instance,
when the query is about “a red empty bottle”, there exists
an observation z ∈ Zh that represents “the object’s color is
red; it is not empty, and it is a bottle.” Actions that produce
no information gain (reinitialize, in our case), and reporting
actions in Ar result in a /0 (none) observation.

O : S×A×Z → [0,1] is the observation function that spec-
ifies the probability of observing z ∈ Z when action a is ex-
ecuted in state s: O(s,a,z). In this work, the probabilities
are learned from performing cross-validation on the robot’s
training data. As described in Section 3.1, predicate learn-
ing produces confusion matrix Cb

p ∈R2×2 for each predicate
p and each behavior b, where b corresponds to one of the

exploration actions shown in Figure 1.

O(s,a,z) = Pr(ps,b,pz)

= Cb
p0
(ps

0, pz
0) ·C

b
p1
(ps

1, pz
1) · · ·C

b
pN−1

(ps
N−1, pz

N−1)

where behavior b corresponds to action a; ps and pz are the
vectors of true and observed values (0 or 1) of the predicates;
ps

i (or pz
i ) is the true (or observed) value of the ith predicate;

and N is the total number of predicates in the query.

3.7 Dynamically Constructed Controllers
State set Y can be very large, due to the large number of
predicates and the exponentially increasing number of their
combinations. For example, one of the datasets in our ex-
periments contains 81 predicates, resulting in 281 possible
states. Due to limited computational resources, it would be
intractable for a robot to generate a far-sighted policy for
identifying an object according to all 81 predicates.

Recent research decomposes a sequential decision-
making problem into two tractable subproblems that respec-
tively focus on high-dimensional reasoning (e.g., objects
with many properties) and long-horizon planning (e.g., tasks
that require many actions) (Zhang, Khandelwal, and Stone
2017). Based on that approach, we dynamically construct
controllers that include a minimum set of predicates, instead
of modeling all of them, in the Y component. In addition to
Y , the following components depend on the user query: re-
porting actions Ar, object property combinations Zh, and the
reward and observation functions (due to the involvement
of Y). As a result, our query-oriented, MOMDP-based con-
trollers are relatively very small, and typically include fewer
than 100 states at runtime.

It should be noted that we use MOMDP, as a special form
of POMDP, to model our domain mainly for the ease of de-
scribing the mixed observability over X and Y (Section 3.3).
Our approach enables automatic generation of complete
MOMDP models. One can encode such MOMDP models in
such a way that existing POMDP solvers (e.g., (Kurniawati,
Hsu, and Lee 2009)) can be used to generate policies, as we
do in this work.

4 Experimental Results
We evaluate the proposed method using two datasets in
which a robot explored a set of objects using a variety of
exploratory behaviors and sensory modalities, and show that
for both our proposed MOMDP model outperforms baseline
models in exploration accuracy and overall exploration cost.
Two datasets of Sinapov14 and Thomason16 have been
used in the experiments, where Thomason16 has a much
more diverse set of household objects and a larger number
of predicates that arose naturally during human-robot inter-
action gameplay.

Sinapov14 Dataset: In this dataset, the robot explored 36
different objects using 11 prototypical exploratory behav-
iors: look, grasp, lift, shake, shake-fast, lower, drop, push,
poke, tap, and press 10 different times per object. The ob-
jects are lidded containers with the same shape and varied
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Figure 3: Objects in the Thomason16 dataset (Left) and the
one used in the illustrative example in Section 4.1 (Right).

along 3 different attributes: 1) color: red, green, blue; 2)
weight: light, medium, heavy; and 3) contents: beans, rice,
glass, screws. These variations result in the 3× 3× 4 = 36
objects bearing combinations of these attributes in the set P
that the robot is tasked with learning. It should be noted that
costs of actions in the two datasets are different, because the
datasets were collected using different robots.

Thomason16 Dataset: In this dataset, the robot explored
32 common household objects using 8 exploratory actions:
look, grasp, lift, hold, lower, drop, push, and press. Each
behavior was performed 5 times on each object. The dataset
was originally produced for the task of learning how sets of
objects can be ordered and is described in greater detail by
(Sinapov et al. 2016).

For the look behavior, color, shape, and deep features (the
penultimate layer of the trained VGG network (Simonyan
and Zisserman 2014)) are available. For the remaining be-
haviors, the robot recorded audio, proprioceptive (finger po-
sitions for grasp), and haptic (i.e., joint forces) features pro-
duced by the interaction with the object. These modalities
result in |C| = 7×2 + 1×3 = 17 sensorimotor contexts.

The set of predicates P consisted of 81 words used by
human participants to describe objects in this dataset during
an interactive gameplay scenario described by (Thomason et
al. 2016). Example predicates include the words red, heavy,
empty, full, cylindrical, round, etc. Unlike the Sinapov14
dataset, here the objects vary greatly, and the predicate
recognition problem is much more difficult.

4.1 Illustrative Example
We now describe an example in which a robot is tasked with
identifying properties of a given object. We randomly se-
lected an object from the Thomason16 dataset: a blue and
red bottle full of water (Figure 3). We then randomly se-
lected properties, in this case “yellow” and “metallic,” and
asked the robot to identify whether the object has each of
the properties or not. The selected object was not part of
the robot’s training set used to learn the predicate recogni-
tion models and the MOMDP observation model. The robot
should report negative to both properties while minimizing
the overall cost of exploration actions.

Given this user query, we generate a MOMDP model that
includes 25 states. We then generate an action policy us-
ing past work’s methods (Kurniawati, Hsu, and Lee 2009).
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Figure 4: Action selection and belief change in the explo-
ration of a red and blue bottle full of water, given a query of
yellow and metallic.

Currently, building the model takes almost no time, and we
uniformly gave two seconds for policy generation using the
model (same in all experiments). The time for computing
the policy is insignificant relative to the time for exploratory
behaviors (which is what we are really trying to minimize).

Figure 4 shows the belief change in this process. The
initial distributions over X and Y are [1.0,0.0, · · · ] and
[0.25,0.25,0.25,0.25] respectively. The policy suggests
“look” first. We queried the dataset to make an observa-
tion, neg-neg in this case. The belief over Y is updated
based on this observation: [0.41,0.28,0.19,0.13], where
the entries represent neg-neg, neg-pos, pos-neg, and pos-
pos respectively. There is a (fully observable) state transi-
tion in X , from x0 to x1, so the belief over X becomes
[0.0,1.0,0.0, · · · ]. Based on the updated beliefs, the pol-
icy suggests taking the “push” action, which results in an-
other neg-neg observation. Accordingly, the belief over Y
is updated to [0.60,0.13,0.22,0.05], which indicates that
the robot is more confident that the object is neither “yel-
low” nor “metallic”. After actions of reinitialize, look, push,
and push (this first push action was unsuccessful, and
produced the /0 observation), the belief over Y becomes
[0.84,0.04,0.12,0.01]. The policy finally suggests reporting
neg-neg, making it a successful trial with an overall cost of
167 seconds, which results in a reward of 500− 167 = 333
(an incorrect report would have resulted in −667 reward).

Remarks: It should be noted that the classifiers associ-
ated with each behavior and word will produce an output
even in cases where the sensory signals from that behavior
are irrelevant to the word. For instance, although the sen-
sory signals relevant to “push” are haptics and audio, the
first “push” action results in an observation of “yellow”. It
was “yellow:neg”, because the training set prior of most ob-
jects are not yellow. The robot favors actions that distinguish
‘easy’ predicates (look distinguishes yellow well in this case)
because there is the discount factor (0.99): If an action is use-
ful, the robot will prefer taking it early. The more the action
is delayed, the more the expected reward is discounted.

4.2 Results
Next, we describe the experiments we conducted to eval-
uate the proposed MOMDP-based multi-modal perception
strategy for object exploration. The goal was to increase the
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Table 1: Performances of MOMDP-based and two baseline
planners in cost (second) and accuracy on the Sinapov14
dataset. Numbers in parenthesis denote the Standard Devia-
tions over 400 trials.

Properties Method Overall cost (std) Accuracy

Random Plus 17.56 (30) 0.245
Two Predefined Plus 37.10 (0.00) 0.583

MOMDP (Ours) 29.85 (12.87) 0.860

Random Plus 10.12 (21.77) 0.130
Three Predefined Plus 37.10 (0.00) 0.373

MOMDP (Ours) 33.87 (8.78) 0.903

accuracy in identifying properties of a novel object while re-
ducing the overall action costs required in this process. In all
evaluation runs, the object that needs to be identified was not
part of the robot’s training set when learning the predicate
recognition models or the MOMDP parameters. The follow-
ing baseline action strategies are used in experiments, where
belief is updated using Bayes’ rule except for Random:
• Random: Actions are randomly selected from A that in-

cludes both reporting and legal exploration actions. A trial
is terminated any of the reporting actions.

• Random Plus: Actions are randomly selected from legal
exploration actions. Under an exploration budget, one se-
lects the reporting action that makes the best sense (i.e.,
that corresponding to y with the highest belief).

• Predefined: An action sequence is strictly followed: ask,
look, press, grasp, lift, lower and drop.2 Under an explo-
ration budget or in early terminations caused by illegal
actions, the robot selects the reporting action that makes
the best sense.

• Predefined Plus: The same as Predefined except that un-
successful actions are repeated until achieving the desired
result(s).

Sinapov14 Dataset: In each trial, we place an object that
has three attributes (color, weight and content) on a table and
then generate an object description that includes the values
of two or three attributes. This description matches the ob-
ject in only half of the trials. When two (or three) attributes
are queried, Y includes four (or eight) states plus term state,
resulting in S that includes 25 (or 49) states. The other com-
ponents of the dynamically constructed MOMDPs grow ac-
cordingly, given an increasing number of queried attributes.

Experimental results are reported in Table 1. Not sur-
prisingly, randomly selecting actions produces low accu-
racy. The overall cost is smaller in more challenging trials
(all three properties are questioned), because in these trials
there are relatively fewer exploration actions (more proper-
ties produce more reporting actions), making the agent more
likely to take a reporting action. Our MOMDP-based multi-
modal perception strategy reduces the overall action cost

2Action ask was used only in the Thomason16 experiments,
because other exploration actions are not as effective as in
Sinapov14.

Figure 5: Evaluations of five actions strategies on the
Thomason16 dataset. Comparisons are made in three cat-
egories of overall reward (Left), exploration cost (Middle),
and success rate (Right).

while significantly improving the reporting accuracy. Our
performance improvement is achieved by repeating actions
as needed, selecting legal actions (e.g., lift is legal only if
the current state is x2) that produce the most information or
have the potential of doing so in the future, and even arbi-
trarily reporting without “wasting” exploration actions given
queries where the exploration actions are not effective.

Thomason16 Dataset: In this set of experiments, a user
query is specified by randomly selecting one object and N
properties (1 ≤ N ≤ 3), on which the robot is questioned.
Each data point is an average over 200 trials, where we con-
ducted pairwise comparisons over the five strategies, i.e., the
strategies were evaluated using the same set of user queries.
A trial is successful only if the robot reports correctly on
all properties. It should be noted that most of the contexts
are misleading in this dataset due to the large number of ob-
ject properties, so it happens that more exploration actions
confuse the robot more if the actions are not carefully se-
lected. Figure 5 shows the experimental results. Overall re-
ward is computed by subtracting overall action cost from the
reward yielded by the reporting action (either a big bonus or
a big penalty). We do not compute standard deviations in this
dataset, because the diversity of the tasks results in problems
of very different difficulties.

We can see our MOMDP-based strategy consistently per-
forms the best in terms of the overall reward and overall
accuracy. When more properties are queried, the MOMDP-
based controllers enable the robot to take more exploration
actions (Middle subfigure), whereas the baselines could not
adjust their question-asking strategy accordingly.

The last experiment aims to experimentally evaluate the
need of dynamically constructed controllers. We constructed
MOMDP controllers including two relevant and an increas-
ing number of irrelevant properties (i.e., the ones that are
not queried). Results are shown in Figure 6. We can see, the
quality of the generated action policies decreases soon (from
higher than 150 to lower than 25 in reward), when more ir-
relevant properties are included in the MOMDPs. We did not
include six or more irrelevant properties, because the solver
cannot produce any policy in one and a half minutes.
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Figure 6: A “super” MOMDP that models two relevant and
(an increasing number of) irrelevant properties, in compari-
son to dynamically constructed controllers used in this work.

5 Conclusions and Future Work
We investigate using mixed observability Markov decision
processes (MOMDPs) to help robots select actions for multi-
modal perception in object exploration tasks. Our approach
can dynamically construct a MOMDP model given an object
description from a human user (e.g., “a blue heavy bottle”),
compute a high-quality policy for this model, and use the
policy to guide robot behaviors (such as “look” and “shake”)
toward maximizing information gain. The dynamically built
controllers enable the robot to focus on a minimum set of
domain variables that are relevant to the current object and
query. The MOMDP models are constructed using two exist-
ing datasets collected with robots interacting with objects in
the real world. Experimental results show that our object ex-
ploration approach enables the robot to identify object prop-
erties more accurately without introducing extra cost from
exploration actions compared to a baseline that suggests ac-
tions following a predefined action sequence.

This research primarily focuses on a robot exploring ob-
jects in a tabletop scenario. In future work, we plan to in-
vestigate applying this approach to tasks that involve more
human-robot interaction and mobile robot platforms, where
exploration would require navigation actions and perceptual
modalities such as human-robot dialog. Finally, in the two
datasets used in this paper, the robot’s manipulation actions
were always successful but that would not always be the
case in a real-world scenario; therefore we plan to extend our
framework to situations in which the robot’s actions may fail
(in terms of manipulation) or cause undesirable outcomes
(e.g., dropping an object may break it).
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Abstract

Human-agent teaming is a difficult yet relevant problem do-
main to which many goal reasoning systems are well suited,
due to their ability to accept outside direction and (relatively)
human-understandable internal state. We propose a formal
model, and multiple variations on a multi-agent problem, to
clarify and unify research in goal reasoning. We describe ex-
amples of these concepts, and propose standard evaluation
methods for goal reasoning agents that act as a member of a
team or on behalf of a supervisor.

1 Introduction
An important focus of research on intelligent agents is to
achieve goals quickly and reliably. In recent years, goal rea-
soning researchers have considered the issue of goal change,
a process by which an agent can shift the overall focus of its
activities. This change can be prompted by a nameless out-
side goal source and/or an internal motivation model. In this
work, we advocate modeling the other agents whose goals
an agent attempts to achieve. With this model change, it be-
comes clear that goal reasoning agents are particularly well-
suited to being team players. We define a human-agent team-
ing model and problem, and discuss how future goal reason-
ing research can leverage it.

Research on goal reasoning has investigated multiple
framework abstractions for algorithms and agent architec-
tures (e.g., Goal-Driven Autonomy (Molineaux, Klenk, and
Aha 2010) and the Goal Lifecycle (Roberts et al. 2014)),
but has not focused on common problems. Areas such as
reinforcement learning and automated planning have bene-
fited greatly from such a focus, receiving additional attention
from competitions and comparing results via easy-to-use
benchmarks. While one problem may not suffice to compare
all goal reasoning agents, a small number of common prob-
lems could facilitate comparative publications, and thereby
focus goal reasoning research. This paper focuses on elab-
orating this position, and a candidate formal framework for
describing classes of problems; we expect that future work
will specify concrete representations and initial problems.

In Section 2, we provide a formal description of a general
human-agent teaming problem, along with several important

Copyright c⃝ 2018, Association for the Advancement of Artificial
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variations that are commonly encountered in goal reasoning
research. We then discuss some examples of the concepts
described in Section 3, and discuss useful metrics for com-
parison in Section 4. Finally, in Section 5 we conclude.

2 Models of Goal Reasoning for
Human-Agent Teaming

In recent work, goal reasoning systems have explicitly rea-
soned over the presence of other agents and their goals.
For example, goal reasoning agents may be aware that their
opponent in a real-time strategy game is attempting to de-
feat them (Weber, Mateas, and Jhala 2010; Jaidee, Muñoz-
Avila, and Aha 2013; Dannenhauer and Muñoz-Avila 2015),
that other agents may attack them (Bonnano et al. 2016),
or that other agents may impede them (Cox 2013). Other
work has described explicit exchange of goals and other in-
formation between agents and humans for the purpose of
general collaborative tasks (Geib et al. 2016), control of
unmanned vehicles (Richards and Stedmon 2017), and au-
tonomous community formation (Golpayegani and Clarke
2016). The framework presented here is designed to facil-
itate communication and comparison of agents that work
together in these ways. Concepts described here help with
the modeling of the goals, plans, and motivations of other
agents, especially those that reason over goals themselves.
In the spirit of the successful reinforcement learning prob-
lem (Sutton and Barto 1998), we describe a simple set of
functions and informational items intended to be general
enough to be easily applied and used by all agents that solve
these problems. In order to keep this framework generic and
approachable, we avoid committing to representations and
functions that many agents may not be able to provide.

In our model (Figure 1), a team is situated in an environ-
ment. This team can comprise goal reasoning agents, human
teammates, and other software agents. At each time t (t ∈ T ,
the set of discrete time points at which communications oc-
cur), each teammate observes the environment. The environ-
ment’s state is given by st (st ∈ S, the set of all environment
states), and teammate m (m ∈ M , the set of teammates) re-
ceives an observation omt (omt ∈ O, the set of all observa-
tions). The environment creates individualized observations
for each agent; we model the observation generation pro-
cess as a function obsm : S → O. Teammates can perform
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Figure 1: Human-Agent Teaming Problem Model

an action at each time t, denoted amt (amt ∈ A, the set of
all actions). Changes in the environment are dependent on
these actions as well as the prior state, which we model as
the transition function λ : S ×A|M | → S. This generic rep-
resentation allows for description of a wide variety of envi-
ronments, including those with heterogeneous observability,
exogenous events, and role-based actions; however, it does
not permit continuous time.

Acting as teammates imposes some extra requirements on
an agent. Work in human factors (Klein et al. 2004) has rec-
ognized four distinct requirements for acting as a member of
team. Loosely summarized, they are: (1) agree on common
goals; (2) direct and take direction from other teammates; (3)
predict the behavior of other teammates and act in a way they
can predict; and (4) maintain a common understanding of the
shared environment. To support these requirements, in our
framework teammates communicate via requests and expla-
nations. A teammate m can make a request rm,n

t of another
teammate n ∈ M (rm,n

t ∈ R, the set of all requests). Re-
quests should describe everything agent m desires of agent
n at time t. They are used both for direction and describing
desired changes to common goals. Our model makes no spe-
cific commitment to representation; however, we expect that
goal reasoning agents might directly exchange lists of goals,
preferences, and constraints.

Explanations are intended to communicate information
about an agent’s internal state that motivates that agent’s cur-
rent behavior (e.g., “I moved the box because it was block-
ing my vision”, “My battery is low so my movement range is
limited”). Each teammate m provides an explanation xm,n

t
to each other teammate n (xm,n

t ∈ X , the set of all expla-
nations). These explanations should help other teammates
to understand an agent’s actions and predict their future ac-
tions, to facilitate coordination. One particular area of im-
portance is that an agent should explain why it does or does
not pursue another agent’s request; if an agent does not,
for example, have sufficient resources to succeed, this may
prompt the requester to provide resources or assistance.

Note that the explanations described here are proactive
and not query-based. While query-based explanations are an
important problem, a clean separation of agent-based coor-
dination and decision-making issues from natural-language

issues will permit objective evaluations and comparisons
without human interaction issues. We expect, however, that
an external query interface could be provided that translates
queries into informational requests.

Each teammate m uses the various pieces of informa-
tion they have received over time1 (i.e., observed environ-
ment states, received requests, and received explanations)
along with their sent requests (and, implicitly, their inter-
nal motivations) to guide their action selection policy πm :
O|T | × R|M | × X |M |×|T | × R|M | → A. This policy is ex-
pected to be dynamic, and may be influenced by an agent’s
interactions with its teammates, as well as by the environ-
ment. A typical goal reasoning agent’s policy may involve
considering and reselecting goals and replanning to achieve
them, but the model accommodates various types of policies.

We also model the satisfaction of each teammate, which
describes how well an agent’s desires are being met. Satis-
faction is a function of an agent’s observations (which may
indicate the achievement of desired states), requests made
and received (which help determine the success and failure
of collaboration), and explanations received (which may jus-
tify failures or provide confidence in the current collabora-
tion): satm : O|T |×R|M |×X |M |×|T |×R|M | → R. The sat-
isfaction of the entire team can also be modelled as a func-
tion of each teammate’s satisfaction (f(sat1, . . . , sat|M |));
optimizing this measure incorporates an agent’s own satis-
faction, as well as the estimated satisfaction of each of its
|M |− 1 teammates.

To exemplify how our model could be used in practice,
we describe it in terms of four variations on the human-
agent teaming problem that describe existing goal reasoning
work: single supervisor, silent teammates, silent assistant,
and rebel agent. These examples are not meant to be ex-
haustive, but instead to show that our model can represent
common team structures encountered in goal reasoning re-
search.

2.1 Single Supervisor
Even autonomous goal reasoning agents often receive goals
or tasks from an outside source. In this framework, we model
that source as an agent who makes requests and wants expla-
nations to understand what the agent is doing to fulfill them.
This results in the Single Supervisor version of the human-
agent teaming problem model, shown in Figure 2. In this
version, an agent has a single teammate whose satisfaction
it wishes to maximize, referred to as the supervisor. While
both teammates can sense and act in the environment2, the
superior-subordinate relationship results in requests and ex-
planations being unidirectional (i.e., the agent cannot make
requests of the supervisor and the supervisor does not ex-
plain itself to the agent). As such, the agent’s action selec-
tion policy does not include explanations it has received or

1We assume that, since the requests at the current time contain
the complete request to/from each agent, the policy does not need
to consider past requests. If this is not the case, the action selection
policy can be extended to include past requests.

2Although the supervisor does not need to be situated in the
environment.
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Figure 2: Single Supervisor version of the Human-Agent
Teaming Problem Model

Figure 3: Silent Teammates version of the Human-Agent
Teaming Problem Model

requests it has sent, and only deals with a single teammate
(the policy is simplified to π : O|T | × R → A). The pri-
mary performance measure for this problem is the supervi-
sor’s true satisfaction, measured either at the termination of
interaction, or as an average over time.

2.2 Silent Teammates
In the Silent Teammates version of the human-agent team-
ing problem model (Figure 3), an agent operates as a mem-
ber of a human-agent team, but does not receive any direct
requests from its teammates. This is an unusual teaming ar-
rangement, but necessary when a team is communication-
restricted in some way (possibly to avoid giving an adver-
sary knowledge). In this problem, the agent does not make
requests of other teammates, nor expect explanations from
them. However, the agent still provides an explanation on
demand, to assist teammates in understanding when they
have questions. An example of such a goal reasoning agent
is the Autonomous Squad Member (ASM), an agent control-
ling an unmanned ground vehicle that is embedded in a team
of humans (Gillespie et al. 2015). The ASM agent must infer
and respond to teammates’ desires (e.g., follow along, pro-
vide cover in a fight) without explicit requests. This results
in an action selection policy that inputs only observations:
π : O|T | → A. Similarly, the satisfaction function does
not include requests: satm : O|T | × X |M |×|T | → R. The
primary performance measure in this problem is the team’s
overall satisfaction.

Figure 4: Silent Assistant version of the Human-Agent
Teaming Problem Model

2.3 Silent Assistant
The Silent Assistant version is a multi-agent teaming prob-
lem with no explanation requirement (Figure 4). In this ex-
ample, the agent assists one or more other agents by acting
on their requests, but does not provide explanations, receive
explanations, or make requests of others (i.e., it does not ini-
tiate coordination). An example of such a goal reasoning
agent is the Tactical Battle Manager (TBM), an agent that
controls an unmanned air vehicle while serving as a wing-
man for an aircraft controlled by a human pilot (Floyd et
al. 2017). The TBM operates autonomously but receives ex-
plicit tasks from a human pilot. The lack of communication
from the agent is largely due to the real-time adversarial na-
ture of the domain; goal changes are motivated by dangerous
situations or opportunistic targets, so explanations are not a
primary requirement for this system. Additionally, since the
TBM is a human pilot’s wingman, it serves a subordinate
role and therefore does not generate requests. As such, the
agent’s action selection function and the satisfaction func-
tions do not include explanations or requests from the agent
(π : O|T | × R|M | → A, satm : O|T | × R|M | → R). The
primary performance measure is the team satisfaction func-
tion.

2.4 Rebel Agent
The previous three problem versions we described assume
that the agent’s primary drive is to satisfy teammates’ re-
quests. In the Rebel Agent version (Coman, Gillespie, and
Muñoz-Avila 2015), an agent has internal goals or moti-
vations that differ from (and may conflict with) those of
its teammates. There are two ways in which a rebel agent
can be represented using our model. The simplest method
is to consider the agent as a member of its team but hav-
ing internal motivations that are unknown to its teammates.
Thus, when attempting to maximize team satisfaction it
may prioritize its own satisfaction above the satisfaction of
its teammates (e.g., provide them with different weights).
The ARTUE agent (Molineaux, Klenk, and Aha 2010) is
a rebel agent that receives explicit requests in the form
of goals that it may choose to ignore in order to achieve
goals more important to it. A more complex representa-
tion would be to consider the agent to be a member of
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two teams concurrently (i.e., in Figure 1 the agent would
be at the intersection of two teams). For example, con-
sider an agent that is a member of a corporate catering
team, but is also a member of a vegetarian team. While the
agent contributes toward achieving catering goals (e.g., host
a successful event, maximize profit) it may choose actions
to maximize the vegetarian team’s satisfaction (e.g., mini-
mize the amount of meat used). In the internally motivated
case, the primary performance measure is a team/rebel sat-
isfaction function f(sat1, . . . , sat|M |,mot(sfinal)), where
mot(sfinal) describes how well a rebel’s internal mo-
tivations are satisfied in the true final state of the
environment. In the dual-membership case, the pri-
mary performance measure is a combined function of
two (or potentially more) team satisfaction functions:
fC(f1(sat1, . . . , sat|M |), f2(sat1, . . . , sat|M |)).

2.5 Assumptions
Consideration of important assumptions is necessary for this
framework. Existence of the transition and observation func-
tions means that environments can be static or dynamic, de-
terministic or probabilistic, and fully or partially observable.
Existence of the policy and satisfaction functions of team-
mates implies that we should also consider whether to as-
sume complete or incomplete knowledge about these func-
tions, and whether information given regarding them (i.e.,
requests and explanations) is perfect or noisy. This cuts
across all problems, and those purporting to address these
problems should state their assumptions regarding these
functions.

3 Examples
Requests and explanations can take many forms includ-
ing natural language utterances, structured text, or low-level
state representations. In this section we provide examples of
requests, explanations, and how they can be used.
Requests: In general, we expect requests to vary in com-
plexity across agents. An example complex request repre-
sentation might be a tuple ⟨Savoid, Fprefs, G,C⟩, including
constraints Savoid ⊂ S in the form of states to avoid (e.g.,
“battery should never fall below 10%”), preference func-
tions Fprefs : S × S → {True, False} (e.g., “spend as lit-
tle money as possible”), goal states G ⊂ S (with or without
priorities), and context C that describes why achievement of
a particular goal is desired (e.g., the reason for requesting
an agent to cook food could be because (1) ‘supervisor is
hungry’ or (2) ‘supervisor needs to bring food to a dinner
party later’). Context and preferences are especially relevant
for goal reasoning agents, as these can guide which goals
should be considered when goal change is warranted. Addi-
tionally, the reasons for a supervisor’s request of a goal are
likely to be useful in making goal change decisions; for ex-
ample, the context may include a higher-level goal of which
the current request is a subgoal (e.g., a “cook food” goal is a
subgoal of a ¬hungry goal).
Explanations: An important reason for explanations is that
goal reasoning agents may change their local objectives (i.e.,
subgoals) in response to changes in the environment prevent-

ing the accomplishment of the original task. Thus, when-
ever an agent changes its goal, an explanation could be
a tuple ⟨gfailed, cfailed, gnew, pnew⟩ composed of a failed
goal gfailed, description of state properties that prevent goal
achievement cfailed, new goal gnew, and new plan pnew.
Note that in this framework, explanations are always proac-
tive for simplicity of discussion; to support reactive expla-
nations, an external interface could store this information to
present to a human in answer to specific queries.
A Supervisor Requests Cake: We now describe an exam-
ple of the Single Supervisor problem: first, a human su-
pervisor σ makes a request of a chef agent α to “bake
me a chocolate cake that I can eat when I get home”.
Here, the request rσ,αt is the tuple ⟨∅,∅, {{exists(chocolate-
cake), on(chocolate-cake,table)}}, {hungry(me), wants(me,
chocolate)}⟩, which describes a single goal state based on
the original English utterance (translating human utterances
to goals has garnered attention in the human-robot interac-
tion community, see (Briggs, McConnell, and Scheutz 2015)
for an example). No constraints or preferences are provided.

The chef agent α represents its supervisor’s satisfaction
function satσ as a weighted average of (1) the percentage
of his desires that are satisfied in the current state and (2)
the time delay between t (time of request issuance) and ta
(time of request achievement). Based on this, the agent uses
an automated planner to produce a plan that achieves the
requested goal in the shortest possible time. Its policy πα

removes the first action from this plan and executes it; this is
repeated until the following action aαt is known to be inad-
missible based on a state observation oαt . We now describe a
situation that may warrant the agent to consider goal change.

Soon after it begins acting to achieve the goal, the agent
discovers it cannot continue baking because there is no cake
flour in the kitchen. The agent considers adoption of a new
goal acquire(cake-flour), and creates a plan: go to the gro-
cery store, purchase cake flour, and return. However, the plan
to accomplish the new goal would significantly increase the
time required to fulfill the supervisor’s request. Knowing
that the supervisor is hungry and wants chocolate cake, the
chef agent decides to instead switch to a goal to make choco-
late chip pancakes, which seems like a reasonable substitute.
When the supervisor comes home, the agent provides him
with an explanation:
⟨{exists(chocolate-cake), on(chocolate-cake, table)},
{available(cake-flour)},
{exists(pancakes), on(pancakes, table)},
{acquire(pancake-mix), acquire(chocolate-chips),

bake(pancakes, pancake-mix, chocolate-chips),
serve(pancakes)}⟩.

This explanation serves to communicate why the agent
changed its goal, and what it did instead. If the context of the
supervisor’s request had been a birthday party, the agent α
might have reasoned that the subgoal of going to the grocery
store was warranted.

In general, the issue of how much information must be
exchanged between teammates is unresolved. In this exam-
ple, we assume sufficient knowledge to minimize the need
for communication; for example, the agent knows that the
supervisor’s desires would be met to some degree by choco-
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late chip pancakes. Future work on goal reasoning agents
will need to consider this question.

4 Evaluating Explainable Goal Reasoning
Agents

We expect that typical evaluations will consider a specific
problem and assumptions, and show results on a primary
performance metric in a subset of domains. Results should
be directly comparable with other agents that make the same
assumptions, use the same domain, and use a similar set of
teammates. For this reason, sharing domains as well as ap-
propriate automated teammates (i.e., other software agents
that are part of the team) should promote comparison.

When discussing the four versions of the human-agent
teaming problem, we briefly described the various metrics
that can be used to measure whether the goal reasoning
agent is an effective member of the team. However, in ad-
dition to agent performance there is also the issue of how
well the agent interacts with its human teammates. In these
cases, evaluations should consider whether the provided ex-
planations are appropriate for aiding human collaboration.
We consider metrics for explanation as falling into four cat-
egories: tests of explanation quality, tests of user satisfac-
tion, tests of user comprehension, and tests of user or user-
system team performance. These are based directly on Hoff-
man, Klein and Mueller’s (2017) work on evaluating expla-
nations. Two agents need not use the same explanation rep-
resentation (e.g., natural language, internal state variables)
to be compared.
Tests of Explanation Quality: Experiments that measure
explanation quality can be conducted without humans in the
loop, but often still require a human to assess the results.
These can be compared against explanations generated by
another system or by a human. Some measures of explana-
tion quality are surveyed in Table 1.
Tests of User Satisfaction: These should solicit a user’s
subjective satisfaction with an agent’s performance, typi-
cally using Likert scale questions.
Tests of User Comprehension: These gauge how well ex-
planations generated by an agent improve the accuracy of
a user’s mental model of an agent’s behavior. For explain-

Table 1: Abstract Measures of Explanation Quality
Soundness Plausibility, internal consistency
Appropriate
Detail

Amount of detail and its focus points

Veridicality Does not contradict the ideal model (al-
though there are times when inaccurate
explanations work better for some users
and some purposes)

Usefulness Fidelity to the designer’s or user’s goal
for system use

Clarity Understandability
Completeness Relative to an ideal model
Observability Explains an agent mechanism
Dimensions
of Variation

Reveals boundary conditions

able autonomous agents, experiments could include ques-
tions about the system’s policy to measure user understand-
ing.
Tests of User or User-System Team Performance: These
measure how explanation affects the user’s ability to accom-
plish some task, often an interactive task involving the ex-
plaining agent. A scenario-specific performance metric can
be used to evaluate the team’s performance for this purpose.
To provide a comparison, the same evaluation should be ap-
plied with and without agent-provided explanations, and, if
possible, against a human-only team.

5 Conclusions and Future Work
We have presented new formal models and problem vari-
ations for human-agent teaming, in hopes of promoting
comparisons, competitions, and sharing of evaluation code
among goal reasoning researchers. We have made the case
that explanation is an important and attainable capability
for goal reasoning agents. Finally, we have described useful
evaluations to be used to provide evidence of how well both
goal reasoning agents and human-agent teams, perform.

In future work, we will produce refined models based on
community feedback; furthermore, we will provide concrete
problem instances and representations for use in benchmark-
ing and comparison.

6 Acknowledgements
This research was developed with funding from DARPA.
The views, opinions, and/or findings expressed are those
of the author and should not be interpreted as represent-
ing the official views or policies of the DoD or the U.S.
Government. Table 1 is used with permission from the In-
stitute for Human and Machine Cognition and was created
by IHMC, MacroCognition LLC, and Michigan Technical
University, with the support of the DARPA XAI Program
DARPA-BAA-16-53. All rights are reserved by IHMC.

References
Bonnano, D.; Roberts, M.; Smith, L.; and Aha, D. 2016.
Selecting subgoals using deep learning in Minecraft: A pre-
liminary report. In Working Notes of the IJCAI-16 Workshop
on Deep Learning and Artificial Intelligence.
Briggs, G.; McConnell, I.; and Scheutz, M. 2015. When
robots object: Evidence for the utility of verbal, but not nec-
essarily spoken protest. In International Conference on So-
cial Robotics, 83–92. Springer.
Coman, A.; Gillespie, K.; and Muñoz-Avila, H. 2015. Case-
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Abstract
Robots working with humans in real environments need to
plan in a large state–action space given a natural language
command. Such a problem poses multiple challenges with
respect to the size of the state–action space to plan over, the
different modalities that natural language can provide to spec-
ify the goal condition, and the difficulty of learning a model
of such an environment to plan over. In this thesis we would
look at using hierarchical methods to learn and plan in these
large state–action spaces. Further, we would look the using
natural language to guide the construction and learning of hi-
erarchies and reward functions.

Introduction
In this work we consider the problem of robots working
with humans in real world environments, and try to postu-
late some solutions that are feasible to solve such problems
efficiently. There are many challenges that robot interact-
ing with humans, we specify a few that we try to address in
this work. The first challenge is to plan under uncertainty in
large state–action spaces, which are continuous. The prob-
lem is also exacerbated as the number of manipulable ob-
jects in the environment increase, as there is a combinato-
rial explosion in the state–action space with each object the
agent can manipulate. In this thesis we will explore hierar-
chical methods to solve such tasks.

The second challenge is to follow a natural language com-
mand to its goal specification. Natural language allows mul-
tiple modalities to present commands. Commands can be
specified at different orders of granularity, coarse or fine, al-
lowing a range to specify commands like “get to the library”
to “take a left turn”. Further, commands can be specified
with ends or means of the task as the goal. For example,
an instruction to “go to the red room” is very different from
“go to the red room through the long corridor.” In this thesis
we will look at methods that ground natural language com-
mands to reward functions hierarchies or plan directly, de-
pending on the modality demanded by the natural language
command.

The third challenge involves learning to solve such tasks
efficiently. This involves learning hierarchies and spatio–
temporal abstractions that construct the hierarchies. We are

Copyright c⃝ 2018, Association for the Advancement of Artificial
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interested in looking at connections between attribute learn-
ing and option learning to construct these hierarchies. At-
tribute learning previously has been done using trajectories
or natural language. We want to combine these ideas to learn
hierarchies, which are efficient to plan over.

There are other challenges in robotics like partial observ-
ability, dialog, vision for robotics, task generalization, etc.
which are not the focus of this thesis. In the next sections
we would set up the first three challenges in detail along
with our proposed solutions.

The Planning problem
When carrying out tasks in unstructured, multifaceted en-
vironments such as factory floors or kitchens, the result-
ing planning problems are extremely challenging due to the
large state and action spaces (Bollini et al. 2012; Knepper
et al. 2013). Typical planning methods require the agent to
explore the state–action space at its lowest level, resulting in
a search for long sequences of actions in a combinatorially
large state space. For example, cleaning a room requires ar-
ranging objects in their respective places. A naive approach
for arranging object might have to search over all possible
states by placing all objects in all possible locations, result-
ing in an intractable inference problem with increasing ob-
jects.

One promising approach is to decompose planning prob-
lems in such domains into a network of independent sub-
goals. This approach is appealing because the decision-
making problem for each subgoal is typically much simpler
than the original problem. There are two ways in which the
decision problem can be simplified. First, instead of select-
ing between actions, the agent can select between subgoals
that are recursively solved, decreasing the search depth. Sec-
ond, the state representation of the world can be compressed
to include only information that is relevant to the current de-
cision problem. Importantly, planning algorithms for each
subproblem can be custom-tailored, allowing each goal to
be solved as efficiently as possible.

We proposed Abstract Markov Decision Process (AMDP)
hierarchies as a method for reasoning about a network of
subgoals (Gopalan et al. 2017 in press), we describe the
formalism briefly here. AMDPs offer a model-based hier-
archical representation that encapsulates knowledge about
abstract tasks at each level of the hierarchy, enabling
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Figure 1: (a) The Taxi problem, where the taxi needs to drop
the passenger to their goal; (b) the Taxi AMDP hierarchy,
nodes indicate subgoals which are solved using an AMDP
or a primitive action. The edges are actions belonging to the
parent AMDP. Shaded nodes indicate which subgoals are ex-
panded by AMDPs in a given state. In contrast, bottom-up
approaches like MAXQ (Dietterich 2000) expand all nodes
in the figure. These savings result in significant total plan-
ning computation gains: AMDP planning requires only 3%
of the backups that MAXQ requires for the Taxi problem.

much faster, more flexible top–down planning than previ-
ous bottom–up methods like MAXQ (Dietterich 2000) or
Options (Sutton, Precup, and Singh 1999). An AMDP is an
MDP whose states are abstract representations of the states
of an underlying environment (the ground MDP). The ac-
tions of the AMDP are either primitive actions from the en-
vironment MDP or subgoals to be solved. An AMDP hierar-
chy is an acyclic graph in which each node is a primitive ac-
tion or an AMDP that solves a subgoal defined by its parent.
The main advantage of such a hierarchy is that only subgoals
that help achieve the main task need to be planned for; cru-
cially, plans for irrelevant subgoals are never computed. An-
other desirable property of AMDPs is that agents can plan in
stochastic environments, since each subgoal’s decision prob-
lem is represented by an MDP. Moreover, each subgoal can
be independently solved by any off-the-shelf MDP planner
best suited for solving that subgoal.

For example, consider the Taxi problem (Dietterich 2000)
shown in Figure 1a and its AMDP hierarchy in Figure 1b.
The objective of the task is to deliver the passenger to their
goal location out of four locations on the map. The subgoal
of Get Passenger, which picks up the passenger from a
source location, is represented by an MDP, with lower-level
navigation subgoals, Nav(R), and a passenger-pickup sub-
goal, Pickup . The state space to solve the Get Passenger
subgoal need not include certain aspects of the environment
such as the Cartesian coordinates of the taxi and passenger.
To solve this small MDP when picking up a passenger at the
Red location, it is unnecessary to solve for the subpolicy to
navigate to the Blue location. Our hierarchy enables a deci-
sion about which subgoal to solve without needing to solve
the entire environment MDP.

In this top-down methodology, planning is performed by
first computing a policy for the root AMDP for the current
projected environment state, and then recursively comput-
ing the policy for the subgoals the root policy selects. In
contrast a bottom up planner like MAXQ or options based

based planning would compute value functions over the hi-
erarchy by processing the state–action space at the lowest
level and backing up values to the abstract subtask nodes.
This bottom-up process requires full expansion of the state–
action space, resulting in large amounts of computation.

Moreover, since the tasks are abstractly defined (for ex-
ample, “take passenger to blue location”), changing the task
description from the “blue” to the “red” location is straight-
forward, and users do not have to directly manipulate the
reward functions at each level of the hierarchy. This abstrac-
tion is useful in robotics, as human users can simply change
the top-level task description and the required behavior will
be achieved by the hierarchy.

Formally, we define an AMDP as a six-tuple (S̃ , Ã, T̃ ,
R̃, Ẽ , F ). These are the usual MDP components, with the
addition of F : S → S̃ , a state projection function that
maps states from the environment MDP into the AMDP state
space S̃ . Additionally, the actions (Ã) of the AMDP are ei-
ther primitive actions of the environment MDP, or are asso-
ciated with subgoals to solve in the environment MDP. The
transition function of the AMDP (T̃ ) must capture the ex-
pected changes in the AMDP state space upon completion
of these subgoals. With these action and state semantics, an
AMDP, in effect, defines a decision problem over subgoals
for the environment MDP.

Naturally, each subgoal for a task must be solved. How-
ever, even a single subgoal might be challenging to solve in
the environment MDP. Therefore, we introduce the concept
of an AMDP hierarchy H = (V,E), which is a directed
acyclic graph (DAG) with labeled edges. The vertices of the
hierarchy V consist of a set of AMDPs M and the set of the
primitive actions A of the environment MDP. The edges in
the hierarchy link multiple AMDPs together, with the edge
label associating the action of an AMDP with either a prim-
itive environment action or a subgoal that is formulated as
an AMDP itself. Consequently, an AMDP hierarchy recur-
sively breaks down a problem into a series of small subgoals.

We now describe planning with a hierarchy H of AMDPs.
The critical property of our planning approach is to make de-
cisions online in a top-down fashion by exploiting the tran-
sition and reward function defined for each AMDP. In this
top-down methodology, planning is performed by first com-
puting a policy for the root AMDP for the current projected
environment state, and then recursively computing the pol-
icy for the subgoals the root policy selects. Consequently,
the agent never has to determine how to solve subgoals that
are not useful subgoals to satisfy, resulting in significant
performance gains compared to bottom-up solution meth-
ods. This top-down approach does require that the transition
model and reward function for each AMDP are available.

If each AMDP’s transition dynamics accurately mod-
els the subgoal outcomes, then an optimal solution for
each AMDP produces a recursively optimal solution for the
whole problem; if the transition dynamics are not accurate,
then the error associated with the overall solution can still
be bounded as shown in our previous work (Gopalan et al.
2017 in press). Further, as each sub-goal has a local model,
we can ground any sub-goal in the DAG depending on the
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Algorithm 1 Online Hierarchical AMDP Planning
function SOLVE(H)

GROUND(H, ROOT(H))
function GROUND(H, i)

if i is primitive then ◃ recursive base case
EXECUTE(i)

else
si ← Fi(s) ◃ project the environment state s
π ← PLAN(si, i)
while si /∈ Ei do ◃ execute until local termination

a ← π(si)
j ← LINK(H, i, a) ◃ a links to node j
GROUND(H, j)
si ← Fi(s)

task specification as shown in the next section.
Pseudocode for online hierarchical AMDP planning is

shown in Algorithm 1. Planning begins by calling the recur-
sive ground function from the root of H . If node i passed to
the ground function is a primitive action in the environment
MDP, then it is executed in the environment. Otherwise, the
node is an AMDP that requires solving. Before solving it,
the current environment state s is first projected into AMDP
i’s state space with AMDP i’s projection function Fi. Next,
any off-the-shelf MDP planning algorithm associated with
AMDP i is used to compute a policy. The policy is then
followed until a terminal state of the AMDP is reached. Fol-
lowing actions selected by the policy for AMDP i involves
finding the node the actions links to in hierarchy H , and then
calling the ground function on that node. Note that after the
ground function returns, at least one primitive action in the
environment should have been executed. Therefore, after
ground is called, the current state for the AMDP is updated
by projecting the current state of the environment with Fi.

Planning with AMDPs shows significant improvements in
planning times when compared with traditional bottom-up
planners or flat planners when tested across different do-
mains as shows in the results of (Gopalan et al. 2017 in
press). We also showed a real time planning application
for task and motion planning in robotics. In this demo a
Turtlebot moved a block to from one room to the goal room
in presence of environmental disturbances as shown in our
video1. This is a hard planning problem with a continu-
ous state–action space, and stochasticity in the environment.
The agent shows reactive control to retrieve the block in the
video as soon as it is snatched, to move the block to the goal
room. For more details please refer (Gopalan et al. 2017 in
press).

Hence AMDPs show significant improvements in plan-
ning times across multiple domains, even with continuous
state–action spaces. Now that we have a tool to plan in large
domains, we look next at natural language as an input and
the different modalities of inputs, some of which would find
the use of AMDP hierarchies useful.

1https://youtu.be/Bp3VEO66WSg

Goal specification with Natural Language
Natural language provides an easy interface for an untrained
public to work with robots. Such robots that understand
natural language commands must at the very least under-
stand goal based commands that ask the robot to achieve
a certain goal configuration. Abstraction is important for
achieving such goal conditions because it is much harder
to map natural language to a sequence of robot control
signals. Instead existing approaches map natural language
commands to a formal representation at some fixed level of
abstraction (Chen and Mooney 2011; Matuszek et al. 2012b;
Tellex et al. 2011). While effective at directing robots to
complete predefined tasks, mapping to fixed sequences of
robot actions is unreliable when faced with a changing or
stochastic environment. Accordingly, (MacGlashan et al.
2015) decouple the problem and use a statistical language
model to map between language and robot goals, expressed
as reward functions in a Markov Decision Process (MDP).
Then, an arbitrary planner solves the MDP, resolving any
environment-specific challenges. As a result, the learned
language model can transfer to other robots with different
action sets so long as there is consistency in the task rep-
resentation (i.e., reward functions). However natural lan-
guage problem specification has different different kinds of
requirements: granularity, means and ends of task solving,
and temporal specification of goals.

First is the aspect of granularity. For example, a brief
transcript from an expert human forklift operator instructing
a human trainee has very abstract commands such as “Grab a
pallet,” mid-level commands such as “Make sure your forks
are centered,” and very fine-grained commands such as “Tilt
back a little bit” all within thirty seconds of dialog. Humans
use these varied granularities to specify and reason about a
large variety of tasks with a wide range of difficulties. Fur-
thermore, these abstractions in language map to subgoals
that are useful when interpreting and executing a task. More-
over, MDPs for complex, real-world environments face an
inherent tradeoff between including low-level task represen-
tations and increasing the time needed to plan in the pres-
ence of both low- and high-level reward functions (Gopalan
et al. 2017 in press).

To address this problems, we developed an approach for
mapping natural language commands of varying complex-
ities to reward functions at different levels of abstraction
within a hierarchical planning framework. This approach
enables the system to quickly and accurately interpret both
abstract and fine-grained commands. Our system uses a
deep neural network language model that learns how to map
natural language commands to the appropriate level of an
AMDP planning hierarchy. By coupling abstraction level in-
ference with the overall grounding problem, we fully exploit
the subsequent AMDP hierarchy to efficiently execute the
grounded tasks. To our knowledge, we are the first to con-
tribute a system for grounding language at multiple levels of
abstraction, as well as the first to contribute a deep learning
system for improved robotic language understanding. The
results show faster average planning times at all levels of the
hierarchy when compared to a base level planner. A demo
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of the system can be seen here2. The system can accept low
level commands like “go north” and high level commands
like “take the block to the red room.”

Next we would briefly describe other natural language
grounding problems that interest us. First is problem of the
means and ends of task solving, where a user might spec-
ify how to solve a task. For example the trajectory for “go
to red room through the blue room” is very different from
the trajectory for “go to the red room.” This problem can be
solved by a language model that recognizes when the means
of solving a task are more important and would then plan
for the task with different sets of planners. Second is the
problem of temporal specification of rewards, where a com-
mand might be “go to the red room and then go to the blue
room.” Here, we can parse the language with Linear Tem-
poral Logic (LTL) and create a non-Markovian reward func-
tion, where the reward functions switch as a subtask is com-
plete. This formulation would be important to solve tem-
porally extended tasks with multiple subgoal specifications
given by the human user. Abstraction would be important in
these LTL specification as solving these behavioral problems
as the lowest level of abstraction might be computationally
intractable. Next we look at how we might learn these ab-
stractions.

Learning AMDP Hierarchies
The hierarchies that we looked at until now were hand de-
signed, however an agent has to be capable of creating these
hierarchical abstractions on its own in the real world. We
postulate that natural language provides some clues about
the levels of abstraction that a human agent might care about
when working with such robots. We have two goals in this
section; firstly we need to learn the local models for AMDP
hierarchies; secondly a more important goal is to learn an
AMDP hierarchy with language and trajectories.

To solve the first part we can use R-max (Brafman and
Tennenholtz 2002) on every local model of an AMDP hier-
archy. This approach will learn the level 1 models by col-
lecting samples from the environment, but models at every
higher level can be learned exactly by sampling from the
models learned at level 1 . This method would be sample
efficient and would enlighten the trade-offs of having a pre-
cise, expensive to learn hierarchical model versus a cheap
erroneous hierarchical model.

The second and more important goal is to learn an AMDP
hierarchy. Konidaris 2016 uses options or temporally ex-
tended actions to learn symbols from initiation and termi-
nation sets, to create state abstractions and a higher level in
the hierarchy. We believe that an important method to learn
symbols can be via natural language. Matuszek et al. 2012a
learned attributes of objects present in a state to model lan-
guage and perception together. Borrowing ideas of attribute
learning from existing literature, we can create methods to
learn symbols and associated abstract states directly from
demonstrations, and plan for them using AMDP hierarchies.
A simpler idea to test attribute learning might be to learn

2https://youtu.be/9bU2oE5RtvU

object parameterized options, akin to parametrized skills,
where we learn object attributes with natural language.

This learning method would satisfy most of the goals with
respect to an agent in the real world that learns from natural
language and example trajectories; plans in real time given a
natural language command at varying degrees of granularity
and temporal specification.

Conclusion
In this work we look at the problems of understanding nat-
ural language groundings, learning efficient hierarchies and
planning efficiently to have a robot perform tasks real time
in stochastic and large state–action spaces. Our initial re-
sults show that the planning problem can be made easier
with AMDP hierarchies. We have made some inroads in the
natural language grounding problems, where we can specify
problems at different levels of granularity to an agent. How-
ever, we still have to make large amounts of progress in the
problem of learning of a hierarchy. We believe our meth-
ods would lead to faster learning of hierarchies and shorter
planning times when compared to traditional methods.
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Abstract

Learning is an important aspect of human intelligence. People
learn from various aspects of their experience over time. We
present an episodic infrastructure for learning in the context
of a cognitive architecture, ICARUS. After a review of this ar-
chitecture, we formally define the architectural extensions for
episodic capabilities. We then demonstrate the extended sys-
tem’s capability to learn planning operators using the episodic
traces from two Minecraft-like scenarios.

1 Introduction
Learning is of central importance to intelligent agents. From
the beginning of artificial intelligence back in 1950’s, re-
searchers have recognized that the learning process is inti-
mately tied to the nature of intelligence (Simon 1980). In
order to adapt to dynamic environments, intelligent agents
must possess mechanisms that allow them to acquire a broad
repertoire of relevant behaviors. For this reason, there has
been a significant amount of research on learning domain
models in a variety of manners. But we rarely find any theo-
ries that provide a complete account of how experiences are
gathered and how knowledge is derived from such experi-
ences over time.

Our research aims to provide an infrastructure for orga-
nizing and processing collected experience, which then es-
tablishes a foundation for an experiential learning in intel-
ligent agents. We model human episodic capabilities (Tulv-
ing 1983) in the context of a cognitive architecture, ICARUS
(Langley and Choi 2006), and attempt to bridge these ca-
pabilities with other learning modalities. In this paper, we
begin our study with the experiential learning of planning
operators including action and event models. This will pro-
duce agents capable of learning throughout their lives to
develop low-level expertise and adapt to dynamic environ-
ments. Such agents will also be able to recover from incor-
rect or incomplete knowledge over time. Additionally, be-

Copyright c⃝ 2018, Association for the Advancement of Artificial
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cause ICARUS learns structured models, agents retain the
advantage of explainability.

Our work is motivated by situated agents that learn in
changing, dynamic environments. Certainly, robots are one
kind of such agent, but this paper focuses on a simulated
domain described in the next section. After a description
of this illustrative domain, we review the ICARUS architec-
ture by providing necessary definitions that contextualize the
episodic extensions we describe next. Then we present some
preliminary results in the domain. Finally, we will discuss
related work before we conclude.

2 Illustrative Domain
To motivate our research on episodic agents and evaluate
our system’s capabilities, we use a simplified version of a
popular open-world game, Minecraft (Johnson et al. 2016),
where players attempt to survive in a continuous, dynamic
world by collecting resources, forging tools, building struc-
tures, and fighting enemies. Consider a novice agent learn-
ing from an expert player who starts at the lower left corner
of a room. There are resources scattered around the room
and a craft desk nearby the player. The player should gather
the resources to make a sword for protection, but there are
zombies in this room that guard the resources. The player
must be careful because she will lose health if a zombie at-
tacks her.

The expert player starts by selecting a resource and mov-
ing north toward it. Once she is on the same row as the re-
source, the player moves east toward it until she is on the
same column. Now the player is standing by the resource
and picks up the resource to hold it. But there was a zom-
bie in the same location, so the player’s health was reduced
while the player was standing there. Then she moves south
and then west to the craft desk. When the player arrives
there, she puts down the resource on the desk. After re-
peating this process several times, the expert player would
have gathered all the resources necessary to build a sword
and achieve its mission by crafting one. The novice observer
stores in its mind all the situations the expert has encoun-
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Figure 1: A 5x5 notional plot of Minicraft.

tered, and learns action and event models from them that it
will be able to use to play the game.

We began our work by creating a grid world, Minicraft,
that is inspired by the original Minecraft. Although simpli-
fied, this game captures enough dynamism to demonstrate
the learning ability of our system. Figure 1 shows a notional
view of Minicraft, which consists of four entities: resource,
craftdesk, zombie, and the agent. The only entities with dy-
namic properties are the zombie and the agent. The agent
begins at the star and moves one grid at a time while picking
up or dropping resources and crafting items. Zombies, once
placed on the map, are stationary, but provide dynamism to
the world by decreasing the agent’s health by one for every
moment that the agent resides in the same grid as the zom-
bie. All world dynamics, such as the effects of movement
and action are unknown to the observer.

3 ICARUS Review

As a cognitive architecture, ICARUS provides a framework
for modeling human cognition and programming intelligent
agents. The architecture makes commitments to its repre-
sentation of knowledge and structures, the memories that
store these contents, and the processes that work over them.
ICARUS shares some of these commitments with other archi-
tectures like Soar (Laird 2012) and ACT-R (Anderson and
Lebiere 1998), but it also has distinct characteristics like the
architectural commitment to hierarchical knowledge struc-
tures, teleoreactive execution, and goal reasoning capabili-
ties (Choi 2011). Section 3.1 describes the key knowledge
and memory structures of ICARUS, while Section 3.2 out-
lines how processes operate on these memories as part of a
cognitive cycle.

ICARUS learns in the context of propositional states and
action event models. Given a finite set of first order propo-
sitions P we define a propositional language L(P ), and a
finite set of labeled procedures, called actions, A such that
L(P ) ∩A = ∅.
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Figure 2: ICARUS cycle prior to episodic memory extension.

3.1 Representation and Memories
ICARUS distinguishes two main types of knowledge: con-
cepts and skills which represent semantic and procedu-
ral knowledge, respectively. Both have parameterized (i.e.,
lifted) variants that are grounded when variables are as-
signed to objects. Figure 2 shows the long-term and short-
term memories of ICARUS, in which concepts and skills are
stored. Paramaterized concept and skill definitions are stored
in conceptual and procedural long-term memories, respec-
tively. Instances of these definitions are stored in their re-
spective conceptual or procedural short-term memories.

Concepts describe certain aspects of a situation in the en-
vironment. They resemble horn clauses (Horn 1951), com-
plete with a predicate as the head, perceptual matching con-
ditions, tests against matched variables, and references to
any sub-relations.

Definition 1 (Concepts (C)) A primitive concept is defined
over P as ci = ⟨λ, ϵ⟩ where λ ∈ P known as the concept
head, ϵ denoting elements to pattern match in the world state
S, where S is a subset of P . Let Cp be the set of primitive
concepts. A non-primitive concept is defined over P ∪ Cp

as cj = ⟨λ, ϵ, γ⟩ where γ denotes cj’s subrelations. We can
further define non-primitive concepts over P ∪ Cp ∪ Cn,
where Cn is the set of non-primitive concepts.

Figure 3 shows example concepts for Minicraft. The first,
north-of, is a primitive concept that describes the situ-
ation where a zombie is to the north of the agent, using
perceptual matching and test conditions for self and zom-
bie. The second, on-horizontal-axis, depicts a non-
primitive concept where a zombie is on the same horizontal
line as the agent. The third, standing-by, describes an
even more abstract non-primitive concept where the zombie
is standing right next to the agent.

Skills describe procedures to achieve certain concept in-
stances in the environment. These are hierarchical versions
of STRIPS operators (Fikes and Nilsson 1971) with a named
head, perceptual matching conditions, preconditions that
need to be true to execute, direct actions to perform in the
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((north-of ?o1 ?self)

:elements ((self ?self y ?y) (zombie ?o1 y ?y1))

:tests ((> ?y1 ?y)))

((on-horizontal-axis ?o1 ?self)

:elements ((self ?self) (zombie ?o1))

:conditions ((not (north-of ?o1 ?self))

(not (south-of ?o1 ?self))))

((standing-by ?self ?o1)

:elements ((self ?self) (zombie ?o1))

:conditions ((on-horizontal-axis ?o1 ?self)

(on-vertical-axis ?o1 ?self)))

Figure 3: Three ICARUS concepts in the Minicraft domain.

((gather-resource ?o1)

:elements ((self ?self) (resource ?o1))

:conditions ((not (carrying ?any))

(standing-by ?self ?o1))

:effects ((carrying ?o1))

:actions ((*pick-up-resource ?o1)))

((go-to ?o1)

:elements ((self ?self))

:conditions ((north-of ?o1 ?self))

:subskills ((go-up-to ?o1))

:effects ((standing-by ?self ?o1)))

((gather-resource ?o1)

:elements ((self ?self) (resource ?o1))

:conditions ((not (carrying ?any)))

:subskills ((go-to ?o1) (gather-resource ?o1))

:effects ((carrying ?o1)))

Figure 4: Three ICARUS skills in the Minicraft domain.

world or any sub-skills, and the intended effects of the exe-
cution.

Definition 2 (Skills (K)) Given the finite set of actions A,
a skill defined over C ∪ S where C is the set of con-
cepts and S is a propositional state, is a primitive skill if
ki= ⟨ϵ, γ,α,σ, η⟩, where pattern match conditions ϵ ⊆ S,
preconditions γ ⊆ {λ|⟨λ, ·⟩ ∈ C}, actions α ⊆ A, sub-
skills σ = ∅, and effects η ⊆ {λ|⟨λ, ·⟩ ∈ C}. Let Kp be the
set of primitive skills.

A skill defined over C ∪ S ∪Kp is a non-primitive skill if
kj = ⟨ϵ, γ,α,σ, η⟩, where ϵ ⊆ S, γ ⊆ {λ|⟨λ, ·⟩ ∈ C},α =
∅,σ ⊆ Kh, and η ⊆ {λ|⟨λ, ·⟩ ∈ C}. Kh is the set of non-
primitive skills.

Figure 4 shows example skills for Minicraft. The first,
gather-resource, is a primitive skill that describes a
procedure to collect a resource that is executable when the
agent is not carrying anything and is standing next to the re-
source. This skill uses a direct action to pick up the resource
and its intended effect is carrying the resource. The bottom
two are non-primitive skills that use sub-skills: go-to uses
a sub-skill go-up-to to achieve the goal of standing near
the object, while gather-resource uses the two sub-
skills above it to collect a resource.

3.2 The ICARUS Cognitive Cycle
The ICARUS architecture operates in a cognitive cycle re-
peating two steps: conceptual inference and skill execution.
Conceptual inference is the process of creating concept in-
stances (i.e., beliefs). At the beginning of each cycle, the
system receives sensory input from the environment as a
list of objects with their attribute-value pairs; this can be
thought of as the world state and is represented as propo-
sitions. Based on this information, the architecture infers the
concept instances (i.e., beliefs) that are true in the current
state by matching its concept definitions to perceived objects
and other concept instances in a bottom-up fashion.

In summary, Figure 2 shows concept definitions housed
in the conceptual long-term memory are used to infer the
beliefs of the system from the world state and are stored as
concept instances in the conceptual short-term memory.
Definition 3 (Beliefs (B)) Let C be the set of concepts.
∀c = ⟨λ, ϵ, γ, τ⟩ ∈ C, ∃ belief b = ⟨λ, ϵ, γ, τ,β⟩ where
β represents bindings that ground b on the perceptual el-
ements, ϵ. Let B be the set of all possible beliefs, and let
B = 2B be the set of all belief states. A belief state s ∈ B.

Skill execution proceeds after conceptual inference
whereby ICARUS finds all the relevant skill definitions for
the current goal(s) that are executable based on the current
beliefs. ICARUS chooses a skill and sets it as its intention
and executes it in the world.
Definition 4 (Intentions (ι)) Let K be the set of skills.
∀k = ⟨ϵ, γ,α,σ, η⟩ ∈ K, there exists intention ι =
⟨ϵ, γ,α,σ, η,β⟩ where β represents bindings that ground ι
in the belief state.

Each cycle may introduce changes in the environment,
which may modify the sensory input for the next cycle, re-
sulting in new beliefs and intentions. The architecture iter-
ates in this manner until all of its goals are achieved or its
operations are terminated for any other reasons.

4 Constructing Episodes
We now shift our attention to extending ICARUS with an
episodic memory. In particular, we highlight the core data
structures of ICARUS’s Episodic Memory (Section 4.1), how
it encodes episodes within that memory through a process
called event segmentation (Section 4.2), and how it general-
izes episodes over time (Section 4.3).

4.1 The Episodic Memory
The episodic memory in ICARUS is a long-term, cue-based
memory that the agent uses to deliberately encode and
retrieve episodes. The architecture organizes its episodic
memory E = ⟨ρ,F,T⟩ in a compound structure composed
of an episodic beliefs-action cache ρ, a concept frequency
forest F, and the episodic generalization tree T.

Figure 5 shows how information is processed within the
episodic memory and is discussed through this section. ρ
acts as a storage for the agent’s unprocessed history. We as-
sume that the agent has sufficient memory to store the com-
plete beliefs-action sequence. F records counts for the num-
ber of times concepts and their instantiations as beliefs have
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occurred during the execution of the agent. T is the main
data structure that organizes and stores episodes; the con-
tents of T are used in the process of learning new skills. The
elements ρ and F (Definitions 5 and 6), discussed next, fa-
cilitate the workings of the event segmentation and episodic
encoding (Section 4.2). Generalization with T is discussed
in Section 4.3.

Since episodes are built on top of sequences of beliefs,
we introduce first the beliefs-action cache, which stores the
moment-by-moment changes in belief, inferred from the
world state, as well as the actions that were taken based on
those beliefs.

Definition 5 (Beliefs-action cache (ρ)) The beliefs-action
cache ρ, is an ordered sequence of belief-action pairs. This
cache stores a complete, detailed history of what the agent
observed. Figure 5 shows that the contents of the belief mem-
ory are inputs to the beliefs-action cache.

Once these traces are collected, they must be processed
for interesting events, which are tracked in the concept fre-
quency forest.

Definition 6 (Concept frequency forest (F)) Let X be a
set of location predicates, and let Y = {x.first|x ∈ S}
be the set of object types. A concept frequency tree is a tree
whose the root µ is a location predicate from X . The chil-
dren of µ are all the concepts the agent has observed in that
location. For each child concept, c, of µ, ∃ a set of types from
Y , to specify concept disjunctions. Under each disjunction,
j, there exists concept instances. Each node in the tree has
a count field, denoting the number of times this node has
been observed. A concept frequency forest is a collection of
concept frequency trees.

ICARUS uses F to model expectation violation. The agent
sets two thresholds: one for positive expectations and one
for negated expectations. Any belief with a conditional
probability, given the location, is greater than the positive
threshold is said to be expected. Any belief with a condi-
tional probability, given the location, is less than the negated
threshold is not expected to be in the state. A belief that vio-
lates an expectation is a significant belief, which prompt the
system to create an episode. This is a primitive method for
novelty detection that only uses spatial information, but we
can further extend the novelty detection method to include
the temporal domain as well.

The episode structure defined in Definition 7 represents
the agent’s experiences in the architecture. Once they are
stored in memory, episodes are processed to abstract general
rules that allow the agent to predict environmental dynamics.

Definition 7 (Episode (ε)) An episode is a tuple
⟨Bs, Be,Σ,ψ⟩, where Bs is the start state of the episode,
Be is the end state of the episode, Σ is the set of significant
beliefs in Be, and ψ is a count for the number of times the
episode has occurred.

During episodic encoding, the start and final states are
taken from the ρ (i.e., the beliefs-action cache). In the
current implementation, Bs and Be are consecutive belief
states, but our work does not require this. Our rationale is
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Skill Long-term 
Memory
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Episodic 
Memory

Figure 5: Block diagram depicting episodic memory compo-
nents and information flow starting from the belief memory.

psychologically inspired. When humans perform low-level
actions, kicking a soccer ball for instance, humans know that
the effect is not always observed in their next cognitive cy-
cle. The ball travels in time before it reaches the goal. This
dynamic is readily understood by most humans. Modeling
actions with temporally delayed effects is part of our future
work.

4.2 Episodic Encoding
Episodic Encoding in ICARUS is a two-step process. First,
ICARUS operates on the ρ to returns a new episode ε. This
is referred to as “Event Segmentation” in Figure 5. Once the
episode exists, the second process places it into the episodic
generalization tree. Algorithm 1 shows that encoding is trig-
gered by the presence of one or more significant beliefs in
belief state.

Algorithm 2 traces how episodes are inserted into the
episodic generalization tree. Suppose the generalization tree
contains several episodes. Γ is a list of sibling episodes un-
der parent ϱ ∈ T If ∀εi ∈ Γ, (εi, ε) /∈ E then (ϱ, ε) ∈ E.
That is ε becomes a child of ϱ. A new episode has success-
fully been encoded into the episodic memory. If ∃εj ∋ εj =
ε, then the counter for εj increments by one and ε is not
inserted.

On every cycle, ICARUS records the belief state and exe-
cuted actions into the episodic cache and updates F. When
the agent infers one or more significant beliefs, it encodes

Algorithm 1 CREATEEPISODE(ρ, loc, Bc)
1: ρ is beliefs-action cache
2: loc is current location
3: Bc is current belief state
4: Bprev ← last state in ρ
5: ρ ← ρ.add(Bc, a)
6: sigs ← GETSIGNIFICANTBELIEFS(Bc, loc)
7: if not NULL(sigs) then
8: ε ← MAKEEPISODE(sigs, Bc, Bprev)
9: T ← INSERT(ε, T)
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Algorithm 2 INSERTEPISODE(ε,T)
1: queue ← ∅
2: temp ← root of T
3: match ← ∅
4: p ← ∅
5: while not NULL(temp) do
6: match ← STRUCTURALEQ?(temp, ε)
7: if match is exact match then
8: temp.count ← temp.count+ 1
9: Try to learn from temp if count high enough

10: BREAK
11: else if match is bc of unification then
12: temp.count ← temp.count+ 1
13: queue ← ∅
14: queue ← temp’s children
15: Try to learn from temp if count high enough
16: p ← temp
17: temp ← queue.FIRST
18: queue ← queue.POP

19: if null(temp) and match not exact then
20: p ← p.ADDCHILD(ε)
21: T ← GENERALIZE(p, ε)

a new episode. The root node of the generalization tree is
the most general episode and is allowed to have an arbitrary
number of children. Under the root, episodes are grouped
according to structural similarity. Two episodes e1, e2 are
structurally similar if their significant beliefs unify. By
“unify” we mean that there must exist a binding set that
transforms the significant beliefs of e1 to those of e2 and
vise versa. This is a rigid generalization scheme that needs
more consideration in future work. Each child is a k-ary tree
where k ∈ N. Episodes become more specific at each de-
creasing level of the tree according to structural similarity.
At the leaf nodes exist fully instantiated episodes.

4.3 Episodic Generalization
ICARUS supports generalization of the episodic tree dur-
ing encoding of episode, εi. Definition 8 shows that an
episode hierarchy is induced by structural similarity. Two
sibling episodes εi, εj generalize iff ∃ episode εg such that
(εg, εi) ∈ E and (εg, εj) ∈ E, but (εi, εg) /∈ E and
(εj , εg) /∈ E. This means that εg unifies with its children,
εi, εj , but its children cannot unify with it because they con-
tain more specified bindings. If εg exists, ICARUS tests to
see if it is still more specific than the parent of εi. If so, then
εg’s parent becomes εi’s parent and εg’s children become
εi, εj . The count for a generalized episode is the summation
of the count of its children.

Definition 8 (Generalization tree (T)) An episodic gener-
alization tree is a tree (V, E) where V is a set of episodes,
and E is a set of edges. For any εi, εj ∈ V, (vi, vj) ∈ E if
they are structurally similar. An episode is said to be gener-
alized or partially instantiated if the bindings contain one or
more unbound variables.

The generalization tree naturally lends itself to the learn-

ing process as a result of generalization. For example, if per-
son x drops a glass on the ground and it breaks, and person
y drops a glass on the ground and it breaks as well, ICARUS
forms a generalized episode that implies if anyone drops a
glass on the ground, it will break. The ability to gain knowl-
edge in this way is central to general intelligence. As the tree
adds more episodes, they are sorted into increasingly sensi-
ble taxonomies. The resulting tree after insertion is ICARUS’
best estimate of the ideal generalization tree. This organi-
zational structure was inspired by the incremental concept
formation literature (Gennari, Langley, and Fisher 1989).
As episodes become more general, the skills ICARUS learns
from those episodes are equivalently general. So, general-
izing skills is performed within the episodic generalization
tree, not the skill learning algorithm.

5 Skill Learning using the Episodic Memory
In previous work, ICARUS supported learning by observing
problem solving traces that include goals, conditions, and
the skills used (Nejati 2011). The system relied on the expla-
nations it generated based on the given trace, and this pro-
cess required, at the very least, primitive skills in ICARUS’
memory. In the current work, we start with only the concepts
that are sufficient to describe situations in the world but the
agent does not have any skills in its knowledge base.

ICARUS starts as an observer and records the history
of belief states and ground actions in its episodic mem-
ory. As its experience accumulates, the agent will insert an
episode whose count surpasses a predefined threshold for
model learning. At that moment, the system uses the ac-
tions from Bs → Be as a search cue for collecting other
episodes where that ordering of actions took place. This
trace of episodes is then used in the rule induction algorithm,
MLEM2 (Grzymala-Busse and Rzasa 2010). Although we
are using MLEM2, this need not be the case. Any rule learn-
ing algorithm may be used as long as there is a transforma-
tion from ICARUS’s representation of experience to the rep-
resentation that the learning algorithm requires. After learn-
ing, the agent can seamlessly utilize the learned skills during
problem solving.

5.1 Learning Action and Event Models
In order to learn models of the world, ICARUS must first
retrieve experiences via a retrieval cue. The system gen-
erates an observation, as defined in Definition 9 for each
episode that matches the cue. For the case of model learn-
ing, the retrieval cue is some subset of actions ai from A.
As the episodes are examined, matches are collected into an
episodic trace of evidence related to ai.

Definition 9 (Observations (O)) Let o = ⟨si, ai, sf ⟩ be an
observation from ρ, the beliefs-action cache, where si, sf ∈
ς are respectively initial and final belief states, and ai⊆ Λ
be the set of actions that transformed si to sf An episodic
trace, O is a collection of observations.

MLEM2 learns rules from data tables, therefore, once the
episodic trace is obtained it needs to be transform O into a
table. The x-axis for this table is an enumeration of all the
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Belief ℓb ℓb ∩ {1, 3, 4}
(holding sword1) {1,2,3,4,5} {1,3,4}
(holding nothing) {6} ∅
(holding food1) {7,8} ∅

(next-to ?zombie) {1,3,4,7} {1,3,4}
(next-to tree1) {5,2, 6,8} ∅
(health good) {1,2,3,4,5,6,7,8} {1,3,4}

Table 1: Sample attribute and decision blocks.

unique beliefs in O, and the y-axis numbers each observa-
tion in O. Each belief, b on the x-axis has an associated list
, blockb = {i|⟨sj , aj , sk⟩ ∈ O[i], b ∈ sj}of the observation
indices it appeared in. The last column of the data table is the
list of the effects, fx for each associated observation. Table 1
summarizes the data table in a way that clearly shows each
belief’s block list. For example, the middle column states for
the first row, that the (holding sword1) belief was present in
observations 1 through 5.

For each effect, f in fx, the algorithm computes a list,
blockfx = {i|⟨sj , aj , sk⟩ ∈ O[i], f ∈ sk} of observation
indices that it appeared in as well. MLEM2 tries to find, for
each effect, conditions whose associated blocks cover the
effect block. These coverings are what are the learned action
and event models.

In this example, assume ai= ((∗attack)), and fx =
{((zombie-dead ?zombie), {1, 3 , 4}), ((wood wood1), {2})}.l

MLEM2 attempts to find local coverings of fx from the
list of belief conditions. MLEM2 tries the pair (b, blockb)
whose listing, blockb intersected with an uncovered effect
block0fx = {1, 3, 4} is the largest. If blockb ≤ block0fx,
then that condition becomes a rule that covers that effect. If
blockc ! block0fx then other conditions need to be added to
cover it. Once a rule has been found that covers all the cases
of for an effect, the same process repeats for the uncovered
effects in fx. In the example, the system learns the following
rule: (next-to ?zombie) ∩ (holding sword) → (zombie-dead
?zombie).

In the ICARUS context, MLEM2 results are converted to
action and event models, which are primitive skills. The left
hand side of the rules become the preconditions, the right
hand side would be the effects of the skill. The action infor-
mation would capture what work needs to be done to realize
the effects.

6 Experimental Setup
The goal with this research was to create an agent that could
learn unknown domain dynamics from experience. Further-
more, we want a system that is flexible and continues learn-
ing over the course of its life to reflect the changes in the
world’s changing dynamics. We assume that the world is
fully observable, and that the agent has a vocabulary that
distinguishes belief states perfectly. Also, we assume effects
come immediately after actions, and that the environment is
not stochastic.

We tested on two scenarios. Each scenario has one ex-
pert with perfect concept and skill knowledge, and one ob-
server with full observability of the state, perfect concept

(achieve-bottom-horizontal-axis-and-more)

:conditions ((at minicraft) (north-of r1 me)

(north-of r3 me) (east-of r2 me)

(east-of r3 me) (east-of craftdesk1 me)

(north-of zombie2 me) (north-of zombie3 me)

(east-of zombie1 me) (east-of zombie2 me)

(good-health me) (on-ground r1)

(on-ground r2) (on-ground r3)

(on-vertical-axis r1 me)

(on-vertical-axis zombie3 me)

(on-horizontal-axis zombie1 me)

(on-horizontal-axis craftdesk1 me)

(on-horizontal-axis r2 me))

:actions ((*move-up))

:effects ((south-of ?r3 me) (south-of craftdesk1 me)

(south-of ?zombie3 me)

(bottom-of-horizontal ?zombie3)

(bottom-of-horizontal ?r3)

(bottom-of-horizontal craftdesk1))

(achieve-bottom-horizontal-axis-and-more)

:conditions ((on-horizontal-axis ?r3 me)

(on-horizontal-axis craftdesk1 me)

(on-horizontal-axis ?zombie3 me))

:actions ((*move-up))

:effects ((south-of ?r3 me) (south-of craftdesk1 me)

(south-of ?zombie3 me)

(bottom-of-horizontal ?zombie3)

(bottom-of-horizontal ?r3)

(bottom-of-horizontal craftdesk1))

Figure 6: Learned action models for the *move-up action
before (top) and after (bottom) generalization.

knowledge, but no skill knowledge (i.e., no knowledge of
the domain dynamics). We are primarily interested in what
action and event models the agent learns and know how they
change in response to new evidence. In the first scenario,
we place the expert at (1,1), and zombies and resources are
at the other three corners. At (5, 1) there exists a craftdesk.
The expert is tasked with collecting resources and placing
them on the craftdesk. For the case of the expert, this prob-
lem is easily solved, but for the novice, we are interested
in how well it learns the dynamics of the world. An exam-
ple of an event model would be knowing that being next to
a zombie reduces the agent’s health, and an example of an
action model would be learning about what happens to the
state when the agent moves.

The second scenario extends the first with the zombies
and resources have been randomly re-assigned to different
corners. This makes for two different, but structurally iden-
tical scenarios. By doing this, we ensure that the agent con-
structs episodes that will generalize with the other episodes
in its memory.

7 Results
We demonstrate that the agent is able to learn goal-directed,
specific or generalized action and event models from experi-
ence. Because of the episodic memory, ICARUS agents have
a mechanism for experiential learning which allows them
to learn world dynamics in the form of ICARUS skills. The
learned skills are continually revised according to evidence.

Figure 6 demonstrates how the action model for moving

569



(achieve-fair-health-and-more)

:conditions ((good-health me) (on-ground r1)

(healthy-standing-by zombie3))

:actions (nil)

:effects ((fair-health me) (slouching-by me zombie3))

(achieve-fair-health-and-more)

:conditions ((good-health me)

(healthy-standing-by ?zombie2))

:actions (nil)

:effects ((fair-health me) (slouching-by me ?zombie2))

Figure 7: Action models for the event model before learning
(top) and after learning (bottom).

up changes with experience. The initial action model in Fig-
ure 6 (top) contains many irrelevant conditions, while the
final version (bottom) contains no irrelevant conditions; not
shown are intermediate versions. The same is true for the
event model the agent learns for achieving (fair health). Fig-
ure 7 shows that the irrelevant condition is removed from the
event model by the last refinement, where the event model
also successfully generalizes the initial version (top) to the
final version (bottom).

In our framework the system learns models based on the
agent’s interpretation of the ground truth. This is interesting
because it clarifies certain properties of inference. Specif-
ically, if an agent is lacking conceptual vocabulary to de-
scribe situations, its learned models will show evidence of
stochasm. In other words, there will be cases where the same
action occurred in identical belief states resulting in different
effects.

8 Related Work
Earlier research in action recognition and learning aims
to teach robots to recognize and perform human gestures
(Yang, Xu, and Chen 1997). In that work the researchers
used a discrete hidden Markov model to decode human
intentions, and to learn the motor actions that controlled
making gestures. Along this line, Liu et al. (2017) recently
developed a multi-task learning system that hierarchically
recognizes human actions. Also, another recent approach
attempted to learn control policies for continuous, non-
Gaussian stochastic domains (Wang et al. 2017). The work
describes a reinforcement learning system that learns an in-
complete policy for a discrete controller. Given the policy, a
robot executes the action for the nearest state to the current
one.

The main distinction from our work and these is that they
do not learn action models in the way that we have de-
fined them. The action models these systems learn are often
limited to scenario-specific transition functions, and control
policies. The semantic meaning of actions, however is still
unknown to the agent, so planning with the notion of explicit
goals is not possible. Moreover, when these system refer to
action models they typically refer to modeling the human
motor controls that produce gestures.

In addition to machine learning, researchers are also try-
ing to learn operator descriptions that can be used in per-

formance systems. As Langley and Simon point out, our
goal is to understand and characterize the invariants of in-
telligence. Building systems that help explain how novices
become experts in general is key to this endeavor. Wang et
al. (1994) created a system built on PRODIGY (Carbonell
et al. 1991) that incrementally learned planning operators
based on STRIPS (Fikes and Nilsson 1971) via observation
and practice. Expert demonstrations allowed the system to
estimate initial versions of the operators. The agent refined
its knowledge base by attempting to use learned operators
to solve problems. The system was able to learn subgoal or-
derings for the operators, but the system could not learn op-
erator decompositions, so operators were learned and stored
in a flat structure. Gil et al. (1994) discussed how imperfec-
tions in domain knowledge do not always lead to planning or
execution failures. They also presented a system that learns
to refine imperfect operators by experimenting. The experi-
mentation process can refine both operator pre and post con-
ditions.

Another system, ALPINE provided methods for induc-
ing abstraction hierarchies over operators (Knoblock 1990).
Given a set of low-level operators, the system could induce
abstraction hierarchies that reduced the search space.

Another interesting approach learned operators with as-
sociated numeric attributes to denote the utility of a partic-
ular operator (Garcı́a-Martı́nez and Borrajo 2000). In this
way the system favored more accurate operators. Walsh and
Littman (2008) addressed the problem of efficiently learn-
ing STRIPS-like operators via experience. They define their
own notion of an episode to be an initial state, s0 goal state,
and all state-action pairs following s0 until the problem is
solved or marked unsolvable. Their notion of episode, how-
ever, is not tied to a larger theory of episodic memory.

Lastly,Molineaux and Aha (2014) describe a surprise-
driven method for learning event models. Given a problem,
the system returned a plan of actions that would achieve
the goal as well as a sequence of expected state changes
caused by executing those actions. The system notices sur-
prises when discrepancies exist between actual and expected
state transitions. Discrepancies trigger an explanation mod-
ule, DISCOVERHISTORY to hypothesize the cause of the
discrepancies. When explanations fail, the system uses a
variant of FOIL to learn an action model that repairs bro-
ken explanations.

In our work we addressed the problem of model learning
from the vantage point of episodic memory for intelligent
agents. Other research has investigated episodic memory.
In the work most similar to ours, Nuxoll and Laird (2007)
extended the Soar architecture (Laird, Newell, and Rosen-
bloom 1987) with episodic memory. They present results for
action modeling in their work, but details about the learning
mechanism are left out. There are also significant theoreti-
cal differences between the episodic memory in ICARUS and
Soar. ICARUS has strong commitments to hierarchical or-
ganization of knowledge throughout the architecture, which
helps support our theory for incremental learning. Soar, al-
though it has had many successes, does not have such strict
commitments to hierarchy. In their architecture episodes are
stored in a flat container for experiences. Moreover, episodes
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in ICARUS have temporal components, meaning that they
contain a sequence of states, whereas Soar’s episodes do not
have any temporal dimension.

9 Conclusion
We presented a new extension to the ICARUS architecture
that allows agents to learn goal-directed planning operators
from episodic traces. Our results from the Minicraft do-
main showed that our theory incrementally learns skills in a
specific-to-general manner, and also refines skills based on
evidence. This evidence is collected from ICARUS episodic
memory, a dedicated facility for constructing, storing and
organizing experience.
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