VN

Reflecting on Planning Models:
A Challenge for Self-Modeling Systems

Jeremy Frank
NASA Ames Research Center

3/28/18 AAAI Spring Symposium 1

Talk Outline Y/

Motivating Example

— Planning for cyber-physical systems (a Spacecraft)
— Command and Telemetry representation

— Model-based Planning representation

Declarative Abstractions and Refinements

Detecting Model Errors
— Data Driven / Learning
— Fault Management / ‘Oracle’

The Challenge: Correcting Model Errors

VN

* Suppose we are developing a mission planning
system for a spacecraft.

Example

— This could be for a ground system or as part of an
autonomous spacecraft.

* How does a spacecraft plan a change the
direction (attitude) it is pointing?

— A change of pointing is called a slew.

3/28/18 AAAI Spring Symposium 3

VN

e Attitude is angles <x, y, z> in some absolute
coordinate frame (e.g. Earth-centric).

Example

* Slews are constrained by solar panel power
generation, thermal, communications to
Earth, sensor and instrument performance
and safety (among othxer things).

3/28/18 AAAI Spring Symposium 4

Example //AM

//Startracker (COmmandS)

s({o,£f})

Earth

//CPU
c({o,£f})

u(p)

//Power dist.
pd({s,b})

CPU Slewing

//Reaction
//Wheels

r(wi,{c,o},v)

/ /Battery
pd({s,b})

Moon

>45

3/28/18 AAAI Spring Symposium 5

//Startracker

X,Y,2Z
dx,dy,dz

s

//CPU

on,off

u

//Power dist.
sl,s2

p

//Reaction
//Wheels
wl, w2 ,w3,wd
dwl,dw2,dw3, dwd
/ /Battezy

b ,dlo

3/28/18

CPU

Example //Am

Earth

Slewing

>45 Moon

AAAI Spring Symposium 6

The Planning Model //A

* A planning model consists of:
— Objects — things in the world.
— Predicates — properties of things. (True/False)
— Functions — properties of things. (Numbers)
— Actions — ways of changing the properties of things.

* A planning problem consists of:
— A model.
— An initial state description.
— A set of goal states.

 The planner reads the model, initial states, and
goals, and produces a plan.

Example //AM

Earth

pointing

cpu-on

generating

slewing

discharging

battery

4.0
2.0
0.0

Slewing

Sun

3/28/18

>45 Moon

AAAI Spring Symposium

(:durative—action slew

pointing

cpu-on

generating

slewing

dischazging

battery

4.0
2.0
0.0

3/28/18

Model-Based Plannin

:parameters (?from - attitudew
?to - attitude)

:duration (= slew-time ?from ?to)
:condition (and

(at start (pointing 2from)) |

(at start (cpu on))
(over all +{ecpu_on

(at start (gener
(at start (>= (battezy ?se) 3.0) Qualifier

at start (not generating))
at start (not pointing 7?from))
at end (pointing ?to))

:effect
(and
(at start (decrease (battexry ?2se) 2.
(at start (discharging 7?se))
(over all (discharging ?se))
(at start (slewing))
(over all (slewing)) o
(at end (not slewing)) Predicates
(
(
(

AAAI Spring Symposium 9

Model-Based Planning

VN

Time 12:10 12:15 12:20 12:25 12:30 12:35
pointing pointing(moon) .
cpu-on o A

Known True H Possibly True
generating generating
slewing \
dischazging .
We got nothin’

N 4.0

sttery , \

0.0 Function value
Action

3/28/18

AAAI Spring Symposium

10

@ Model-Based Planning //A

Time 12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35
pointing pointing(moon) pointing(earth)
generating genera,ting I
discharging disoharging I
4°©—I
battery 2.0
0.0

3/28/18 AAAI Spring Symposium 11

Model-Based Planning

VN

Time 12:00 12:10 12:18 12:20 12:25 12:30 1R:35
generating generating \
slewing \
dischazging J\ \\
battery 4.0 CPU not on
2.0
0.0 7
Action n

3/28/18

AAAI Spring Symposium

12

Declarative Abstractions and //Am
Refinements

* Unlike other applications, abstraction is a key
element of modeling in this type of problem.

— Planners approximate or abstract the actual
spacecraft behavior.

— These abstractions are typically not documented.

P'w

3/28/18 ASE 2013 13

Declarative Abstractions and //Am
Refinements

 Predicate and Function Abstractions:

— Functions that map the spacecraft data to
planning model predicates or functions.

— One abstraction per predicate or function.

e Command Refinements:

— Function mapping a planning action to a
command sequence.

— One refinement per plan action.

Predicate Abstractions

Pointing =

(x —e<x<x_+¢e) A
(y.—e<y<y.+e) A
(z,—e<z<z_+e)

Generating =
(p=s) A
(sl+s2>e,) A
(db>e,)

2=db, +db,+db,

3/28/18

VN

Earth
XerYer%e

>45 Moon

Command Refinement

Slew:
[0]:
s(£f);
pd(b) ;
u(pi,o);
u(ps, f)

r(wl,c,500); //x rotat;gif
r(w2,c,500) ; \/ |
(101 CPU ,

r(wl,c,0);
r(w2,c,0);
[11]

r(wl,c,500); //y pd€tate

[14]
u(Pirf) ’
u(ps, o)
s (o) ;

Earth
XE’YQ’ZE

//startracker
//power dist
//pointing mode
//pointing mode

Sun
//pointing ¥

//pointing mode
//startracker

Moon

AAAI Spring Symposium 16

Detecting Modeling Errors //AM
and Model Drift

* Modeling is error prone; abstraction
compounds the errors that can be introduced.
* Models may also become wrong over time
— Due to changes in the system

— Due to changes in the operating environment

— Due to changing mission goals and objectives

Detecting Modeling Errors //AM
and Model Drift

 What manner of modeling errors can occur?
— Action Failure: Conditions satisfied but action fails

— Missing Condition: Action condition not in plan so
action fails

— Unexpected Condition: Condition unexpectedly
influences action outcome

— Missing effect: Action succeeds but effect missing
— Unrealized Effect: Action has unmodeled effect

— Timing discrepancy: Action length differs or effects
occur at different times than expected

Detecting Modeling Errors //AM
and Model Drift

 What are the root causes of modeling errors?
— Missing Command
— Bad command order
— Incorrect command input
— Mis-timed command
— Missing Abstraction
— Abstraction error

e

Detecting Modeling Errors //A

Time

12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35

pointing

cpu-on

generating

slewing

dischazging

battery

4.0
2.0
0.0

pointing(moon) pointing(earth)

|

generating

T
| \

discharging ffect starts late! u

Action

3/28/18

AAAI Spring Symposium 20

_____Detecting Modeling Errors

A
(x . -e<x<x_+€)"A\\N

(Y-e<y<y.te) A Earth
(z,—e<x<z_+¢)
:erVeﬁze

Generating =
(p=s) A
(sl+s2>e,) A CPU

(db>e,)

Slewing

2=db, +db,+db,

Moon

>45

3/28/18 AAAI Spring Symposium 21

i

Detecting Modeling Errors //A

Time 12:06 12:10 12:15 12:20 1R2:25 12:30 12:35
generating generating
slewing slewing /
dischazrging disTa,rging
battery o0

2.0 Unexpected
0.0 Effect! |

Action

3/28/18

AAAI Spring Symposium 22

VN

Detecting Modeling Errors

(:durative—action slew
:parameters (?from — attitude
?to - attitude)

:duration (= slew-time ?from ?to)
_ : :condition (and
pointing (at start (pointing ?from))
(at start (cpu on))
cpu-on (over all (cpu on))
(at start (generatlng))
generating (at start (>= (battezy ?se) 3.0)))
reffect
i (and
slewing (at start (decrease (battery ?se) 2.0)
]] (at start (discharging ?sc))
discharging (over all (discharging ?se))
(at start (slewing))
4.0 (over all (slewing))
battery 2.0 (at end (not slewing))
0.0 (at start (not generating))
’ (at start (not pointing ?from))

(at end (pointing ?to))

3/28/18 AAAI Spring Symposium 23

VN

Detecting Modeling Errors

(:durative—action slew
:parameters (?from — attitude
?to - attitude)

:duration (= slew-time ?from ?to)
_ _ :condition (and
pointing (at start (pointing ?from))
(at start (cpu on))
cpu-on (over all (cpu on))
(at start (generatlng))
generating (at start (>= (battezy ?se) 3.0)))
reffect
i (and
slewing (at start (decrease (battery ?se) 2.0)
]] (at start (discharging ?sc))
discharging (over all (discharging ?se))
(at start (slewing))
4.0 (over all (slewing))
battery 2.0 (end (not slewing))
0.0 (start (not generating))
’ (start (not pointing ?from))
(
(

VoY Yo Y
t ct f ct

end (generating)) !
end (pointing ?to)) w

3/28/18 AAAI Spring Symposium 24

Planner

[Model

A

Fixer(s)

>

“Reflection” Architecture

VN

> Plan

Errors

3/28/18

—> Actions

Abstractions

Commands

gt

Expected States

AAAI Spring Symposium

25

“Reflection” Architecture: //Am
Algorithm Sketch

e All abstractions either

— Map a domain of a telemetry variable into a domain
of smaller cardinality
e f(X)=Ys.t. [X|>]Y]
e Special cases: eliminate element of a discrete domain, map
reals to integers, map integers to positive integers
— Map n variables to m<n variables

o f(xy...x,) = {y1Yn!

* Cardinality must still be reduced:
X X e X <Y Y | Y

* Special cases: eliminate variable

“Reflection” Architecture: //Am
Algorithm Sketch

* Planner / plans
— N actions
— P, action conditions / effects for action n
— S predicates in the model (one abstraction per predicate)
— M, predicate instances in a plan
* System
— C,commands in refinement of action n
— T telemetry items
— R values for each item per run
— M, << TR predicate instances produced by simulation

* Asimilar analysis can be done for numerical abstractions
— A finite number of numerical abstractions are formalized!

“Reflection” Architecture: //Am
Algorithm Sketch

* Generate refinement from plan
— 2 C, (N actions, C,commands in refinement of action n)
* Execute /simulate refined command sequences

* Generate plan abstraction from telemetry

— T telemetry items, R values for each item per run, S predicate
types.
— First pass is to generate states: for all R, for all abstractions S,

each abstraction uses at most T telemetry items. This gets us
runtime TRS.

— 2nd pass is to determine start / end times of predicates; this is
another SR.

— (There are important assumptions about the form of the
abstractions i.e. they only use values at one time tic)

— Total: TSR + SR

uReﬂeCtion” Architecture: //AMm
Algorithm Sketch

AENEEEEENENEENEENEENEEEE PEEEEEEER
AENEENEENENEENENNEENEEEE EEEEEEER
ANNEENEENENEENENNENNEEEE EEEEEEER
AENEEEEENENEENEENEENEEEE PEEEEEEER
7 NNNEENNNNENSSSSNENEEEEEE DEEEEEEER
AEEEEEEENENEENENNEENENEE EEEEEEER
AEEEEEEENENEENEENEEEEEEE "EEEEEEER
AEEEENEENENEENEENNENEEEE EEEEEEER
ANNEEEEENENEENENNEENEEEE PEEEEEEER
AENEEEEENENEENENNENNEEEE EEEEEEER
_ ENEENENNENEENENNENEEEEEE QEEEEEEER

3/28/28 AAAISpr ing Symposium

3/28/18

uReﬂeCtion” Architecture: //AMm
Algorithm Sketch

SIS < ABStraction S

8 o

LR [l | | W

SEEEEERRERENSENSENEEEEEE
SEEEEEERERERROO00DO0000E
EEERERRRERERER [/ NNNEEER
UO0DO0LO0LODLODUODLOLOUL

AAAI Spring Symposium

EERRER
S00E00 l E
ER0000
EEEEEEEN
00000000

RERRRCL[
N

uReﬂeCtion” Architecture: //AM
Algorithm Sketch

AENEEEEENENEENEENEENEEEE PEEEEEEER
AENEENEENENEENENNEENEEEE EEEEEEER
ANNEENEENENEENENNENNEEEE EEEEEEER
AENEEEEENENEENEENEENEEEE PEEEEEEER
7 NNNEENNNNENSSSSNENEEEEEE DEEEEEEER
AEEEEEEENENEENENNEENENEE EEEEEEER
AEEEEEEENENEENEENEEEEEEE "EEEEEEER
AEEEENEENENEENEENNENEEEE EEEEEEER
ANNEEEEENENEENENNEENEEEE PEEEEEEER
AENEEEEENENEENENNENNEEEE EEEEEEER
_ ENEENENNENEENENNENEEEEEE QEEEEEEER

3/28/18

“Reflection” Architecture: //Am
Algorithm Sketch

* Generated warnings

— Check to see if simulated predicate start / end time
match compared to plan predicate start / end times
for same predicate types; sufficient, but overkill, to
check every pair mEM o EM..

— O(M, M)

* Generate action discrepancies
— N actions, P action conditions / effects

— For each condition/effect of an action, may need to
search all M, predicate to match conditions / effects

— O(MsanN (Pn))

- Promise of Reflection on I\/IodeléA

* Detect modeling errors prior to launch through testing

* Adapt to changes in spacecraft environment

— Solar panel power generation due to dust (e.g. during surface
operations)

— Unpredictable gravitational field impact on attitude and orbit
determination (e.g. small bodies like asteroids or comets)

— Unpredictable communications performance
— Unpredictable lighting conditions

* Adapt to changes in spacecraft performance
— Solar panel power generation due to age
— CMG degradation
— Battery performance (e.g. cell or string failure)

"Promise of Reflection on I\/IodeléA

* Advantages of reflection and adaptation
onboard:

— More data than telemetered back to ground
— Higher rate data

— Ability to reflect continuously

— No need to pay costs of communication

. Promise of Reflection on I\/IodeléA

* Promising techniques

— Classification — identify rules distinguishing cases
when actions fail vs when they succeed

— Function approximation — attempt to debug

predicate abstractions
- /Lo o, ,}

Split on ?to

T e0g%

3/28/18 AAAI Spring Symposium 35

- Promise of Reflection on I\/IodeléA

* Promising techniques

— Clustering — identify patterns of behavior in data
and map them to predicates

— Exploratory actions — judicious use of proposed
rules in new plans
A

- — Slew achieves goal

Candidate g |--- P O
Model L e _
A e S

Changes N 2027222
————— + 4+ + + - - - ==

______ o o

________ - e==_Slew does not achieves goal

Slew Rate

Promise of Reflection on I\/IodeléA

e What about faults?

— A special class of degradation / unexpected event
— Performance changes are detected and reported
by fault management algorithms

* |nstead of using data to learn and characterize
changes in planning model, make use of these
fault detection algorithms’ outputs directly.

— Treat fault management algorithm as ‘oracle’

VN

“Reflection” Architecture

Planner > Plan —> Actions

[Model |* . Commands
_ .

Abstractions

Fixer(s)

Expected States

3/28/18 AAAI Spring Symposium 38

Errors

. Promise of Reflection on I\/IodeléA

Slew:
[0]:
s(£f);
pd(b) ;
u(pi,o);
u(ps, f)

r(wl,c,500); //x rotat;§\7
r(w2,c,200)5

[12]
r(wl,c,0);
r(w2,c,0);
[14]

r(wl,c,500); //y »6

//startracker
//power dist
//pointing mode
//pointing mode

u{p pointing X
u(ps,o0) //pointing modg
s (o) ; //startracker

Earth
XerYer&e

i
!Eu.fi% cod

“!; l ; A ‘
| 1 |
f =
I []
/ 1

(,. “ s

Fault on rw2 limits m
Velocity!!

Sequence duration
updated!

—

>45

AAAI Spring Symposium

Moon

39

(

pointing

cpu-on

generating

slewing

dischazging

battery

4.0
2.0
0.0

3/28/18

Promise of Reflection on I\/IodeléA

:durative—action slew

:parameters (?from - attitude

?to - attitude)

:duration (= slew-time ?from ?to)
:condition (and

(at start
(at start
(over all
(at start
(at start
reffect
(and
(at start

over all

at start
at start

(
(
E
(at end (not slewing))
(
(
(

(pointing ?from))

Fault increases
cCpu on))

duration!

(
(
(eneratlng))
(>= (battery ?se) 3.0)))

(decrease (battezy ?se) 2.0)
(dischazrging ?sc))
(discharging ?sec))
(slewing))

(slewing))

(not generating))
(not pointing ?from))

at end (pointing ?to))

AAAI Spring Symposium 40

Challenges of Reflection

Algorithms are resource (computationally,
memory) intensive

— “Software has weight”

Existing algorithms for proposing model fixes may
not be sufficient

Algorithms may not find answers due to
insufficient data

Experimentation in mission critical environments
may be dangerous

Model “configuration management” may be
needed if a proposed fix does not perform well

Y/

Adidin

VN

* Fault management algorithms in general reason at low
level of abstraction

— Output often can’t directly be used to change planning
models

— Requires a similar abstraction between components that
can fail and actions in planning model

* Fault management algorithms exist for detecting loss
of capability and redundancy, and leaks
* Making connection to action model is hard

— Example: leak detection. Using leaky system increases
resource consumption rate.

— Operationally, may prefer simply not to use this subsystem
(malfunction => don’t use) but sometimes ya gotta do it

Challenges of Reflection

A Few Words About a REAL 4™
Spacecraft: LADEE

 How would this approach need to scale for LADEE?
— ~600 Commands
— ~25000 Telemetry / data
— 122 Activities
— 27 States
— 21 Numerical Resources

 The LADEE planner model has ~ 12000 lines.
* Simulation data produced at 10Hz (cycles / second)

3/28/18 ASE 2013 43

VN

The Takeaway

* Model-based planning:

— Planning performed at a high level of abstraction
(compared to system behavior).

* Availability of a simulation as an ‘oracle’:

— Abstractions relate planning model to simulation at lower
level of abstraction.

— Abstractions used to identify model errors.

e The detection of model errors can be automated; it is a

challenge to automatically propose corrections to the
model or the abstractions to eliminate errors.

— Doing so enables reflection on planning models and
therefore self-improvement.

3/28/18

Thank You!

AAAI Spring Symposium

45

Previous Work //AM
(Applications)
* Remote Agent [1], EO-1 [2]

— Extensive model reviews.

— Safety reviews to elicit potential hazards.

— Automated tests stochastically generated by
perturbations of nominal scenarios.

— Executed on simulation platforms of varying
fidelity where spacecraft, operations, and safety
constraints were checked.

Previous Work //Am

(Academia)
e tSimple [3]
— Allows some domain behavior modeling using UML object
diagrams.
— Generated plans can be checked against the UML.
 KEEN [4]

— Similar to itSimple, but uses Timed Game Automata (TGA)
instead of UML as domain model.

— Emphasis on temporal planning domains and temporally
flexible plans.

e PDVer [5]

— Plan domain properties specified in LTL (Linear Temporal
Logic).
— Specification of test cases (goals) automatically from LTL.

Previous Work //Am
(Academia)
+ VAL [6]

— Given a plan and a model, determines whether
the plan satisfies the constraints in the domain.

— Limited ability to automatically fix plans.

* Model checking as plan verification [7]

— Employs Java Pathfinder to check properties of
PLEXIL, a language and plan executi-

KKKKKK

Resuestioatapt © Assigment

e —
Bcax
0

— Requires a system model (or simulz
properties to check.

\\\\\\\\\\\
uuuuuuu

nnnnn

““““““““

Exesion. Lookuptonivappen)

Previous Work //Am
(Summary)

 There are tools to assist in verification of plans
against planning models.

e There are tools to assist in test case
generation and model verification.

e Few to no tools to assist in validation of
models.

* No tools to assist in validation against
simulations.

-l A

Diagnhostic Reasoning — Example

PDU BUS POWER

. Power PUMP_ROTATION
ower e it

> Distribution Pump >‘
Supply Unit (RPC)

PDU_RPC_POWER

Pump.Mechanical_Failure
Power_Supply.Fail_to_Gen_Power 1 1 1
RPC.Fail_Open 1 1

-l Y/

Diagnhostic Reasoning — Example

PDU BUS POWER

Sower Power PUMP_ROTATION
W . .

> Distribution Pump >‘
Supply Unit (RPC)

PDU_RPC_POWER

O FAIL Test Pump.Mechanical_Failure
(O PASS Test Power_Supply.Fail_to_Gen_Power 1 1 1
RPC.Fail_Open 1 1

Power
Supply

Diagnhostic Reasoning — Example

PDU BUS POWER

.

Power

PUMP_ROTATION

Distribution Pump
Unit (RPC)

O FAIL Test
O PASS Test

PDU_RPC_POWER

7\0

VN

PDU Bus Power

PDU_RPC_Power

Pump.Mechanical_Failure

Power_Supply.Fail_to_Gen_Power
RPC.Fail_Open

= = +~ |Pump_Rotation

VN

Diagnhostic Reasoning — Example

PDU BUS POWER

P Power PUMP_ROTATION
ower o

> Distribution Pump S
Supply || ynit (RPC) O

PDU_RPC_POWER

Power

. Power

ptation

Must be Pump

Exo Mechanical Failure!

Powe

on
——
O FAIL Test Pump.Mechanical_Failure 1
O PASS Test Power Supply.Fail to Gen Power 1 1
1 1

RPC.Fail_Open

VN

Future Work

How can errors be identified and fixed for
different modeling language features, such as
uncertainty, parameter functions, and
decompositions? (e.g. learning)

How can the architecture be adapted to
suggest changes for plan quality?

How can we take advantage of white box
simulators? auto-generate refinements to sim
commands? auto-fill model? [13]

See [14] for tools for authoring abstractions.

References A

[1] Smith, B., Feather, M., and Muscettola, N. Challenges and Methods in Testing the Remote Agent Planner. Proceedings of the
Artificial Intelligent Planning and Scheduling Conference, 2000.

[2] Cichy, B., Chien, S., Schaffer, S., Tran, D., Rabideau, G., Sherwood, R. Validating the Autonomous EO-1 Science Agent In: Int’]
Workshop on Planning and Scheduling for Space. 2004.

[3] Vaquero, T., Romero, V., Sette, F., Tonidandel, F., Reinaldo Silva, J. [tSimple 2.0: An Integrated Tool for Designing Planning
Domains. In Proceedings of the Workshop on Knowledge Engineering for Planning and Scheduling, 2007.

[4] Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E. Validation and Verification Issues in a Timeline-Based Planning System.
Knowledge Engineering Review, 25(3): 299-318, 2010.

[5] Raimondi, F., Pecheur, C., Brat, G. PDVer, a Tool to Verify PDDL Domains. Proceedings of the ICAPS 2009 VVPS Workshop

[6] Howey, R., Long, D., & Fox, M. (2004). VAL: Automatic Plan Validation, Continuous Effects and Mixed Initiative Planning Using
PDDL. In ICTAI '04: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, pp. 294-301,
Washington, DC, USA. IEEE Computer Society.

[7] Brat, G., Gheorghiu, M, , Giannakopoulou, D., “Verification of Plans and Procedures,” In Proc. of IEEE Aerospace Conf., 2008.

[8] B. Clement, J. Frank, J. Chachere, T. Smith and K. Swanson. The Challenge of Grounding Planning in Simulation in an
Interactive Model Development Environment. Proceedings of the Knowledge Engineering for Planning and Scheduling
Workshop, in conjunction with the 215t International Conference on Automated Planning and Scheduling, 2011.

[9] J. Frank, B. Clement, J. Chachere, T. Smith and K. Swanson. The Challenge of Configuring Model-Based Space Mission Planners.
Proceedings of the 7th International Workshop on Planning and Scheduling for Space, 2011.

3/28/18 AAAI Spring Symposium 55

References A

[10] N. Meuleau and D. Smith. Optimal Limited Contingency Planning. Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 2003.

[11] Mausam, A. Kolobov. Planning with Markov Decision Processes: An Al Perspective. Morgan and Claypool Publishers, 2012.

[12] Hoffmann, J., & Brafman, R. (2006). Conformant planning via heuristic forward search: A new approach. Artificial Intelligence,
170(6-7), 507-541

[13] Schumann J., Gundy-Burlet K., Pasareanu C., Menzies T., Barrett, A. Tool Support for Parametric Analysis of Large Software
Simulation Systems. Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering.

[14] Bell, S., Kortenkamp, D., and Zaientz, J. A Data Abstraction Architecture for Mission Operations. In Proc. of the International
Symposium on Al, Robotics, and Automation in Space, 2010.

[15] M. Fox, D. Long and D. Magazzeni (2012) "Plan-based Policies for Efficient Multiple Battery Load Management", Journal of
Artificial Intelligence Research, Volume 44, pages 335-382

[16] P. Morris, M. Do, R. McCann, L. Spirkovska, M. Schwabacher, J. Frank. Determining Mission Effects of Equipment Failures.
Proceedings of AIAA Space, 2014.

[17] G. Aaseng, E. Barszcz, H. Valdez, and H. Moses. Scaling Up Model-Based Diagnostic and Fault Effects Reasoning for Spacecraft.
Proceedings of AIAA Space 2015, Pasadena, CA, August 2015

3/28/18 AAAI Spring Symposium 56

