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Talk Outline Y/

Motivating Example

— Planning for cyber-physical systems (a Spacecraft)
— Command and Telemetry representation

— Model-based Planning representation

Declarative Abstractions and Refinements

Detecting Model Errors
— Data Driven / Learning
— Fault Management / ‘Oracle’

The Challenge: Correcting Model Errors



VN

* Suppose we are developing a mission planning
system for a spacecraft.

Example

— This could be for a ground system or as part of an
autonomous spacecraft.

* How does a spacecraft plan a change the
direction (attitude) it is pointing?

— A change of pointing is called a slew.

3/28/18 AAAI Spring Symposium 3



VN

e Attitude is angles <x, y, z> in some absolute
coordinate frame (e.g. Earth-centric).

Example

* Slews are constrained by solar panel power
generation, thermal, communications to
Earth, sensor and instrument performance
and safety (among othxer things).
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Example //AM

//Startracker (COmmandS)

s({o,£f})

Earth

//CPU
c({o,£f})

u(p)

//Power dist.
pd({s,b})

CPU Slewing

//Reaction
//Wheels

r(wi,{c,o},v)

/ /Battery
pd({s,b})

Moon

>45
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//Startracker

X,Y,2Z
dx,dy,dz

s

//CPU

on,off

u

//Power dist.
sl,s2

p

//Reaction
//Wheels
wl, w2 ,w3,wd
dwl,dw2,dw3, dwd
/ /Battezy

b ,dlo

3/28/18

CPU

Example //Am

Earth

Slewing

>45 Moon
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The Planning Model //A

* A planning model consists of:
— Objects — things in the world.
— Predicates — properties of things. (True/False)
— Functions — properties of things. (Numbers)
— Actions — ways of changing the properties of things.

* A planning problem consists of:
— A model.
— An initial state description.
— A set of goal states.

 The planner reads the model, initial states, and
goals, and produces a plan.



Example //AM

Earth

pointing

cpu-on

generating

slewing

discharging

battery

4.0
2.0
0.0

Slewing

Sun

3/28/18
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(:durative—action slew

pointing

cpu-on

generating

slewing

dischazging

battery

4.0
2.0
0.0

3/28/18

Model-Based Plannin

:parameters (?from - attitudew
?to - attitude)

:duration (= slew-time ?from ?to)
:condition (and

(at start (pointing 2from)) |

(at start (cpu on))
(over all +{ecpu_on

(at start (gener
(at start (>= (battezy ?se) 3.0) Qualifier

at start (not generating))
at start (not pointing 7?from))
at end (pointing ?to))

:effect
(and
(at start (decrease (battexry ?2se) 2.
(at start (discharging 7?se))
(over all (discharging ?se))
(at start (slewing) )
(over all (slewing)) o
(at end (not slewing)) Predicates
(
(
(
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Model-Based Planning

VN

Time 12:10 12:15 12:20 12:25 12:30 12:35
pointing pointing(moon) .
cpu-on o A

Known True H Possibly True
generating generating
slewing \
dischazging .
We got nothin’

N 4.0

sttery , \

0.0 Function value
Action

3/28/18
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@ Model-Based Planning //A

Time 12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35
pointing pointing(moon) pointing(earth)
generating genera,ting I
discharging disoharging I
4°©—I
battery 2.0
0.0
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Model-Based Planning

VN

Time 12:00 12:10 12:18 12:20 12:25 12:30 1R:35
generating generating \
slewing \
dischazging J\ \\
battery 4.0 CPU not on
2.0
0.0 7
Action n

3/28/18
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Declarative Abstractions and //Am
Refinements

* Unlike other applications, abstraction is a key
element of modeling in this type of problem.

— Planners approximate or abstract the actual
spacecraft behavior.

— These abstractions are typically not documented.

P'w

3/28/18 ASE 2013 13




Declarative Abstractions and //Am
Refinements

 Predicate and Function Abstractions:

— Functions that map the spacecraft data to
planning model predicates or functions.

— One abstraction per predicate or function.

e Command Refinements:

— Function mapping a planning action to a
command sequence.

— One refinement per plan action.



Predicate Abstractions

Pointing =

(x —e<x<x_+¢e) A
(y.—e<y<y.+e) A
(z,—e<z<z_+e)

Generating =
(p=s) A
(sl+s2>e,) A
(db>e,)

2=db, +db,+db,

3/28/18
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Command Refinement

Slew:
[0]:
s(£f);
pd(b) ;
u(pi,o);
u(ps, f)

r(wl,c,500); //x rotat;gif
r(w2,c,500) ; \/ |
(101 CPU ,

r(wl,c,0);
r(w2,c,0);
[11]

r(wl,c,500); //y pd€tate

[14]
u(Pirf) ’
u(ps, o)
s (o) ;

Earth
XE’YQ’ZE

//startracker
//power dist
//pointing mode
//pointing mode

Sun
//pointing ¥

//pointing mode
//startracker

Moon
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Detecting Modeling Errors //AM
and Model Drift

* Modeling is error prone; abstraction
compounds the errors that can be introduced.
* Models may also become wrong over time
— Due to changes in the system

— Due to changes in the operating environment

— Due to changing mission goals and objectives



Detecting Modeling Errors //AM
and Model Drift

 What manner of modeling errors can occur?
— Action Failure: Conditions satisfied but action fails

— Missing Condition: Action condition not in plan so
action fails

— Unexpected Condition: Condition unexpectedly
influences action outcome

— Missing effect: Action succeeds but effect missing
— Unrealized Effect: Action has unmodeled effect

— Timing discrepancy: Action length differs or effects
occur at different times than expected



Detecting Modeling Errors //AM
and Model Drift

 What are the root causes of modeling errors?
— Missing Command
— Bad command order
— Incorrect command input
— Mis-timed command
— Missing Abstraction
— Abstraction error



e

Detecting Modeling Errors //A

Time

12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35

pointing

cpu-on

generating

slewing

dischazging

battery

4.0
2.0
0.0

pointing(moon) pointing(earth)

|

generating

T
| \

discharging ffect starts late! u

Action

3/28/18
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_____Detecting Modeling Errors

A
(x . -e<x<x_+€ )"A\\N

(Y-e<y<y.te) A Earth
(z,—e<x<z_+¢)
:erVeﬁze

Generating =
(p=s) A
(sl+s2>e,) A CPU

(db>e,)

Slewing

2=db, +db,+db,

Moon

>45
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Detecting Modeling Errors //A

Time 12:06 12:10 12:15 12:20 1R2:25 12:30 12:35
generating generating
slewing slewing /
dischazrging disTa,rging
battery o0

2.0 Unexpected
0.0 Effect! |

Action

3/28/18
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Detecting Modeling Errors

(:durative—action slew
:parameters (?from — attitude
?to - attitude)

:duration (= slew-time ?from ?to)
_ : :condition (and
pointing (at start (pointing ?from))
(at start (cpu on))
cpu-on (over all (cpu on))
(at start (generatlng))
generating (at start (>= (battezy ?se) 3.0)))
reffect
i (and
slewing (at start (decrease (battery ?se) 2.0)
] ] (at start (discharging ?sc))
discharging (over all (discharging ?se))
(at start (slewing))
4.0 (over all (slewing))
battery 2.0 (at end (not slewing))
0.0 (at start (not generating))
’ (at start (not pointing ?from))

(at end (pointing ?to))
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Detecting Modeling Errors

(:durative—action slew
:parameters (?from — attitude
?to - attitude)

:duration (= slew-time ?from ?to)
_ _ :condition (and
pointing (at start (pointing ?from))
(at start (cpu on))
cpu-on (over all (cpu on))
(at start (generatlng))
generating (at start (>= (battezy ?se) 3.0)))
reffect
i (and
slewing (at start (decrease (battery ?se) 2.0)
] ] (at start (discharging ?sc))
discharging (over all (discharging ?se))
(at start (slewing))
4.0 (over all (slewing))
battery 2.0 ( end (not slewing))
0.0 ( start (not generating))
’ ( start (not pointing ?from))
(
(

VoY Yo Y
t ct f ct

end (generating)) !
end (pointing ?to)) w
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Planner

[ Model

A

Fixer(s)

>

“Reflection” Architecture

VN

> Plan

Errors

3/28/18

—> Actions

Abstractions

Commands

gt

Expected States
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“Reflection” Architecture: //Am
Algorithm Sketch

e All abstractions either

— Map a domain of a telemetry variable into a domain
of smaller cardinality
e f(X)=Ys.t. [X|>]Y]
e Special cases: eliminate element of a discrete domain, map
reals to integers, map integers to positive integers
— Map n variables to m<n variables

o f(xy...x,) = {y1Yn!

* Cardinality must still be reduced:
X X e X <Y Y | Y

* Special cases: eliminate variable



“Reflection” Architecture: //Am
Algorithm Sketch

* Planner / plans
— N actions
— P, action conditions / effects for action n
— S predicates in the model (one abstraction per predicate)
— M, predicate instances in a plan
* System
— C,commands in refinement of action n
— T telemetry items
— R values for each item per run
— M, << TR predicate instances produced by simulation

* Asimilar analysis can be done for numerical abstractions
— A finite number of numerical abstractions are formalized!



“Reflection” Architecture: //Am
Algorithm Sketch

* Generate refinement from plan
— 2 C, (N actions, C,commands in refinement of action n)
* Execute /simulate refined command sequences

* Generate plan abstraction from telemetry

— T telemetry items, R values for each item per run, S predicate
types.
— First pass is to generate states: for all R, for all abstractions S,

each abstraction uses at most T telemetry items. This gets us
runtime TRS.

— 2nd pass is to determine start / end times of predicates; this is
another SR.

— (There are important assumptions about the form of the
abstractions i.e. they only use values at one time tic)

— Total: TSR + SR



uReﬂeCtion” Architecture: //AMm
Algorithm Sketch

AENEEEEENENEENEENEENEEEE PEEEEEEER
AENEENEENENEENENNEENEEEE EEEEEEER
ANNEENEENENEENENNENNEEEE EEEEEEER
AENEEEEENENEENEENEENEEEE PEEEEEEER
7 NNNEENNNNENSSSSNENEEEEEE DEEEEEEER
AEEEEEEENENEENENNEENENEE EEEEEEER
AEEEEEEENENEENEENEEEEEEE "EEEEEEER
AEEEENEENENEENEENNENEEEE EEEEEEER
ANNEEEEENENEENENNEENEEEE PEEEEEEER
AENEEEEENENEENENNENNEEEE EEEEEEER
_ ENEENENNENEENENNENEEEEEE QEEEEEEER
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uReﬂeCtion” Architecture: //AMm
Algorithm Sketch

SIS < ABStraction S

8 o
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uReﬂeCtion” Architecture: //AM
Algorithm Sketch

AENEEEEENENEENEENEENEEEE PEEEEEEER
AENEENEENENEENENNEENEEEE EEEEEEER
ANNEENEENENEENENNENNEEEE EEEEEEER
AENEEEEENENEENEENEENEEEE PEEEEEEER
7 NNNEENNNNENSSSSNENEEEEEE DEEEEEEER
AEEEEEEENENEENENNEENENEE EEEEEEER
AEEEEEEENENEENEENEEEEEEE "EEEEEEER
AEEEENEENENEENEENNENEEEE EEEEEEER
ANNEEEEENENEENENNEENEEEE PEEEEEEER
AENEEEEENENEENENNENNEEEE EEEEEEER
_ ENEENENNENEENENNENEEEEEE QEEEEEEER
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“Reflection” Architecture: //Am
Algorithm Sketch

* Generated warnings

— Check to see if simulated predicate start / end time
match compared to plan predicate start / end times
for same predicate types; sufficient, but overkill, to
check every pair mEM o EM..

— O(M, M)

* Generate action discrepancies
— N actions, P action conditions / effects

— For each condition/effect of an action, may need to
search all M, predicate to match conditions / effects

— O(MsanN (Pn))



- Promise of Reflection on I\/IodeléA

* Detect modeling errors prior to launch through testing

* Adapt to changes in spacecraft environment

— Solar panel power generation due to dust (e.g. during surface
operations)

— Unpredictable gravitational field impact on attitude and orbit
determination (e.g. small bodies like asteroids or comets)

— Unpredictable communications performance
— Unpredictable lighting conditions

* Adapt to changes in spacecraft performance
— Solar panel power generation due to age
— CMG degradation
— Battery performance (e.g. cell or string failure)



"Promise of Reflection on I\/IodeléA

* Advantages of reflection and adaptation
onboard:

— More data than telemetered back to ground
— Higher rate data

— Ability to reflect continuously

— No need to pay costs of communication



. Promise of Reflection on I\/IodeléA

* Promising techniques

— Classification — identify rules distinguishing cases
when actions fail vs when they succeed

— Function approximation — attempt to debug

predicate abstractions
- /Lo o, ,}

Split on ?to

T e0g%
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- Promise of Reflection on I\/IodeléA

* Promising techniques

— Clustering — identify patterns of behavior in data
and map them to predicates

— Exploratory actions — judicious use of proposed
rules in new plans
A

- — Slew achieves goal

Candidate g |--- P O
Model L e _
A e S

Changes N 2027222
————— + 4+ + + - - - ==

______ o o

________ - e==_Slew does not achieves goal

Slew Rate



Promise of Reflection on I\/IodeléA

e What about faults?

— A special class of degradation / unexpected event
— Performance changes are detected and reported
by fault management algorithms

* |nstead of using data to learn and characterize
changes in planning model, make use of these
fault detection algorithms’ outputs directly.

— Treat fault management algorithm as ‘oracle’
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“Reflection” Architecture

Planner > Plan —> Actions

[ Model |* . Commands
_ .

Abstractions

Fixer(s)

Expected States
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. Promise of Reflection on I\/IodeléA

Slew:
[0]:
s(£f);
pd(b) ;
u(pi,o);
u(ps, f)

r(wl,c,500); //x rotat;§\7
r(w2,c,200)5

[12]
r(wl,c,0);
r(w2,c,0);
[14]

r(wl,c,500); //y »6

//startracker
//power dist
//pointing mode
//pointing mode

u{p pointing X
u(ps,o0) //pointing modg
s (o) ; //startracker

Earth
XerYer&e

i
!Eu.fi% cod

“!; l ; A ‘
| 1 |
f =
I []
/ 1

(,. “ s

Fault on rw2 limits m
Velocity!!

Sequence duration
updated!

—

>45
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(

pointing

cpu-on

generating

slewing

dischazging

battery

4.0
2.0
0.0

3/28/18

Promise of Reflection on I\/IodeléA

:durative—action slew

:parameters (?from - attitude

?to - attitude)

:duration (= slew-time ?from ?to)
:condition (and

(at start
(at start
(over all
(at start
(at start
reffect
(and
(at start

over all

at start
at start

(
(
E
(at end (not slewing))
(
(
(

(pointing ?from))

Fault increases
cCpu on))

duration!

(
(
( eneratlng))
(>= (battery ?se) 3.0)))

(decrease (battezy ?se) 2.0)
(dischazrging ?sc))
(discharging ?sec))
(slewing) )

(slewing) )

(not generating))
(not pointing ?from))

at end (pointing ?to))
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Challenges of Reflection

Algorithms are resource (computationally,
memory) intensive

— “Software has weight”

Existing algorithms for proposing model fixes may
not be sufficient

Algorithms may not find answers due to
insufficient data

Experimentation in mission critical environments
may be dangerous

Model “configuration management” may be
needed if a proposed fix does not perform well

Y/

Adidin



VN

* Fault management algorithms in general reason at low
level of abstraction

— Output often can’t directly be used to change planning
models

— Requires a similar abstraction between components that
can fail and actions in planning model

* Fault management algorithms exist for detecting loss
of capability and redundancy, and leaks
* Making connection to action model is hard

— Example: leak detection. Using leaky system increases
resource consumption rate.

— Operationally, may prefer simply not to use this subsystem
(malfunction => don’t use) but sometimes ya gotta do it

Challenges of Reflection



A Few Words About a REAL 4™
Spacecraft: LADEE

 How would this approach need to scale for LADEE?
— ~600 Commands
— ~25000 Telemetry / data
— 122 Activities
— 27 States
— 21 Numerical Resources

 The LADEE planner model has ~ 12000 lines.
* Simulation data produced at 10Hz (cycles / second)
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The Takeaway

* Model-based planning:

— Planning performed at a high level of abstraction
(compared to system behavior).

* Availability of a simulation as an ‘oracle’:

— Abstractions relate planning model to simulation at lower
level of abstraction.

— Abstractions used to identify model errors.

e The detection of model errors can be automated; it is a

challenge to automatically propose corrections to the
model or the abstractions to eliminate errors.

— Doing so enables reflection on planning models and
therefore self-improvement.
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Previous Work //AM
(Applications)
* Remote Agent [1], EO-1 [2]

— Extensive model reviews.

— Safety reviews to elicit potential hazards.

— Automated tests stochastically generated by
perturbations of nominal scenarios.

— Executed on simulation platforms of varying
fidelity where spacecraft, operations, and safety
constraints were checked.



Previous Work //Am

(Academia)
e tSimple [3]
— Allows some domain behavior modeling using UML object
diagrams.
— Generated plans can be checked against the UML.
 KEEN [4]

— Similar to itSimple, but uses Timed Game Automata (TGA)
instead of UML as domain model.

— Emphasis on temporal planning domains and temporally
flexible plans.

e PDVer [5]

— Plan domain properties specified in LTL (Linear Temporal
Logic).
— Specification of test cases (goals) automatically from LTL.



Previous Work //Am
(Academia)
+ VAL [6]

— Given a plan and a model, determines whether
the plan satisfies the constraints in the domain.

— Limited ability to automatically fix plans.

* Model checking as plan verification [7]

— Employs Java Pathfinder to check properties of
PLEXIL, a language and plan executi-

KKKKKK

Resuestioatapt © Assigment

e —
Bcax
0

— Requires a system model (or simulz
properties to check.

\\\\\\\\\\\
uuuuuuu
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Previous Work //Am
(Summary)

 There are tools to assist in verification of plans
against planning models.

e There are tools to assist in test case
generation and model verification.

e Few to no tools to assist in validation of
models.

* No tools to assist in validation against
simulations.
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Diagnhostic Reasoning — Example

PDU BUS POWER

. Power PUMP_ROTATION
ower e it

> Distribution Pump >‘
Supply Unit (RPC)

PDU_RPC_POWER

Pump.Mechanical_Failure
Power_Supply.Fail_to_Gen_Power 1 1 1
RPC.Fail_Open 1 1




-l Y/

Diagnhostic Reasoning — Example

PDU BUS POWER

Sower Power PUMP_ROTATION
W . .

> Distribution Pump >‘
Supply Unit (RPC)

PDU_RPC_POWER

O FAIL Test Pump.Mechanical_Failure
(O PASS Test Power_Supply.Fail_to_Gen_Power 1 1 1
RPC.Fail_Open 1 1




Power
Supply

Diagnhostic Reasoning — Example

PDU BUS POWER

.

Power

PUMP_ROTATION

Distribution Pump
Unit (RPC)

O FAIL Test
O PASS Test

PDU_RPC_POWER

7\0

VN

PDU Bus Power

PDU_RPC_Power

Pump.Mechanical_Failure

Power_Supply.Fail_to_Gen_Power
RPC.Fail_Open

= = +~ |Pump_Rotation
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Diagnhostic Reasoning — Example

PDU BUS POWER

P Power PUMP_ROTATION
ower o

> Distribution Pump S
Supply || ynit (RPC) O

PDU_RPC_POWER

Power

. Power

ptation

Must be Pump

Exo Mechanical Failure!

Powe

on
——
O FAIL Test Pump.Mechanical_Failure 1
O PASS Test Power Supply.Fail to Gen Power 1 1
1 1

RPC.Fail_Open
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Future Work

How can errors be identified and fixed for
different modeling language features, such as
uncertainty, parameter functions, and
decompositions? (e.g. learning)

How can the architecture be adapted to
suggest changes for plan quality?

How can we take advantage of white box
simulators? auto-generate refinements to sim
commands? auto-fill model? [13]

See [14] for tools for authoring abstractions.
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